首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Forming sheet metal by laser-induced thermal stress (laser forming) is considered to offer great potential for rapid prototyping and flexible manufacturing. Accordingly, many studies have been carried out in different areas of laser forming. However, in order to apply the laser-forming process to real 3D products, a method that encompasses the whole process planning is required, including the laser irradiation patterns, laser power, and travel speed, when the target shape is given. In this work, a new method for 3D laser forming of sheet metal is proposed. This method uses geometrical information rather than a complicated stress–strain analysis. Using this new method the total calculation time is reduced considerably while affording strong potential for enhanced accuracy. Two different target shapes were formed by laser irradiation with the proposed procedure to validate the algorithm.  相似文献   

2.
Although forming sheet metal by laser-induced thermal stresses (laser forming) has been extensively studied, the research has mainly focused on a single angle forming process. The task of free curve laser forming of sheet metal is to determine a set of process parameters such as laser scanning paths, laser power and scanning speed that will make a given shape. Two methods were used for generating the laser scanning paths and the bending angles of each path. Each method was analyzed by computer simulation and the two methods were compared. Experiments verified the applicability of the proposed methods.  相似文献   

3.
An optical technique to align laser beam with the axis of a rotating stage is proposed for laser fabrication of circular microstructures. The laser beam is first aligned parallel to the rotation axis and subsequently adjusted to coincide with the axis. An optical arrangement consisting of two quadrant photodiodes for the x- and y-directions and a specially designed beam splitter is utilized for the alignment. Mathematical modeling of the alignment system is carried out to estimate alignment errors caused by misalignment of mirror surfaces in the beam path. It is shown that parallelness of the laser beam to the rotation axis is a key factor to reduce alignment errors. The proposed method was applied to a microstereolithography system and proved that the laser beam can be aligned within a distance of about 25 μm from the rotation axis.  相似文献   

4.
The physical process of forming a modified region in soda-lime glass was investigated using 1 kHz intense femtosecond laser pulses from a Ti: sapphire laser at 775 nm. Through the modifications induced by the femtosecond laser radiation using selective chemical etching techniques, we fabricated reproducible and defined microstructures and further studied their morphologies and etching properties. Moreover, a possible physical mechanism for the femtosecond laser modification in soda-lime glass was proposed.  相似文献   

5.
A forming process called the mask and flexible pad laser shock forming was proposed to fabricate the micro-features on the copper foil. In this process, the mask and laser beam were used as rigid punches. Shock waves induced by plasma were used as the source of loading and plasticine was used as a flexible pad. This was a micro scale and high strain rate forming process and the traditional forming method with micro-mold was changed. In the experiment, surface morphology of formed parts was represented and it was found that the mask played a significant role in the forming process. In order to understand the forming process in the experiment, process parameters, including laser pulse energy, numbers of laser pulse and grain size, were analyzed. The experimental results showed that different parameters had different effects on formed parts. The surface quality and the thickness distribution of formed parts were investigated. It was found that formed parts could keep good surface quality after laser shocking and the reasons were explored. The thickness distribution was measured and the thickness thinning rate was calculated. There was no local tightening or rupture in the forming area. In this paper, the micro-features could be obtained on metallic foils and the method of mold-free was proved to be feasible.  相似文献   

6.
柴国庆  李武周  周哲 《应用光学》2014,35(4):643-647
介绍了烟幕的类型和使用方式,分析了喷射式彩色烟幕的遮蔽原理。根据三基色原理提出了采用RGB色彩模式测量评估彩色烟幕色度的方法。分析了目前普遍采用的衰减率数据矩阵插值法测量烟幕形成时间的方法以及该方法在使用中存在的误差因素,提出采用彩色烟幕RGB数据矩阵法测量评估彩色烟幕形成时间的新方法,该方法解决了由烟幕的形状及形成方式、目标的数量及布设方式等因素引起的系统误差,经分析该方法对喷射式烟幕形成时间的测量精度提高到90%以上,具有测量精度高、便于数据处理的优点,丰富了烟幕遮蔽效果测量的评估措施。  相似文献   

7.
Due to its enormously high flexibility laser forming has been gaining importance in recent years. This rapidness and flexibility demand very precise controlling strategies especially when simulating the process of large plates and challenging the limited computation power of the current workstation. A simple, robust and accurate modeling method of laser forming has been demonstrated to solve this problem. The simplified model is meshed by multi-layered shell element, simulated with a more real scanning method and fewer parameters. The intelligent meshing strategies have reduced the number of elements dramatically. Thus the simulation efficiency has been improved significantly. By comparing the simulation results under the simplified model with the results under the traditional model for laser forming, the applicability of proposed method has been proven. The method of these simplified models is also suitable to simulate complex finite element models, which take much time to simulate. It would throw some light on the thermal mechanically coupled-field simulation of large sheet.  相似文献   

8.
干涉测量的误差分析与并联机床的准确度测量   总被引:1,自引:1,他引:0  
张立新  黄玉美  王峰 《光子学报》2008,37(6):1224-1228
对雷尼绍激光干涉仪的线性测量原理进行了详细探讨,分析了干涉仪在线性测量中的主要影响因素和误差诱因;作出了线性测量的准直误差特性曲线和阿贝误差特性曲面,并利用最小二乘法拟合得到了干涉仪准直测量误差的数学模型和沿u、v方向离散的阿贝误差特性曲线方程;给出了一种建立误差数学模型的方法.采用激光干涉仪检测了并联数控机床直线轴的运动准确度,并提出了一种适合于并联机床直线轴定位准确度测量的干涉测量方法.  相似文献   

9.
In this study, a novel and simple measurement system for simultaneously measuring the geometric errors in six-degree-of-freedom (6-DOF) for a moving linear stage of a machine tool is designed and validated. Compared to laser interferometer and laser Doppler systems, this new measurement system is less expensive and capable of multiple functions. The proposed measurement system comprises an optics module, composed of two reflectors and two cubic beam splitters; a sensing module, composed of three two-dimensional position sensitive detectors (PSDs); and a helium-neon (He-Ne) laser. Using skew-ray tracing and a first-order Taylor series expansion, the 6-DOF geometric errors of the moving linear stage, which include translation and rotation errors, are analyzed. A laboratory prototype system is built to verify the effectiveness and accuracy of the proposed measurement system. The experimental results show that the displacement uncertainty and the angular uncertainty of the proposed measurement system are less than 1.2 µm and 0.4″, respectively. Compared with the Renishaw laser interferometer XL-80 laser system, the translational accuracy and the rotational accuracy of the proposed measurement system are less than ±1 µm and ±0.2″, respectively, when the linear stage travels 6 mm.  相似文献   

10.
Laser forming is a new type of flexible manufacturing process that has become viable for the shaping of metallic components. Process designing of laser forming involves finding a set of process parameters, including laser power, laser scanning paths, and scanning speed, given a prescribed shape. To date, research has focused on process designing for rectangular plates, and only a few studies are presented for axis-symmetric geometries like circular plates. In the present study, process designing for axis-symmetric geometries-with focus on class of shapes-is handled using a formerly proposed distance-based approach. A prescribed shape is achieved for geometries such as quarter-circular and half-circular ring plates. Experimental results verify the applicability of the proposed method for a class of shapes.  相似文献   

11.
We construct a high-precision wavelength meter for infrared tunable diode lasers (TDL) which consists of moving corner reflectors forming a Michelson interferometer, with a single-frequency HeNe laser as a standard. The design of the wavelength meter is described in detail, and possible sources of errors are discussed. An absolute accuracy of 10?7 is demonstrated by measuring CO2 laser wavelengths and almost the same order of accuracy is achieved by applying the wavelength meter to the ν1 band of N2O observed by a TDL.  相似文献   

12.
Mixing metallic Al into the starting material for silicate glass is proposed as a means of forming Si structures in glass. We confirmed that Si nanocrystals are space-selectively deposited in silicate glass via a thermite reaction triggered by femtosecond laser pulses. Small Si particles were transformed into larger, but still micrometer sized, Si particles by laser irradiation. These structures grew to micro-size particles due to the thermite reaction promoted by heat treatment. We discuss what effect the irradiation of the focused laser pulse had on the Si deposition process in the laser-irradiated region. Localized high temperatures and pressures and generation of shock waves appear to be very important in forming Si-rich structures that contribute to the growth of Si particles. The diffusion of calcium ions by the generation of shock waves and the presence of Al-rich structures is important for forming Si-rich structures such as Si clusters, which is achieved by continuously breaking Si–O bonds using localized high temperatures.  相似文献   

13.
In a laser forming process, different forming mechanisms have different deformation behaviors. The aim of laser forming is to acquire plane strain under an upsetting mechanism, while a plate undergoes a small bending deformation. In some industrial applications, the bending strain should not occur. To achieve high-precision forming, the deformation behaviors of a metal plate when an upsetting mechanism plays a dominant role are studied in the paper. Several heating methods are proposed to reduce the plane strain difference along the thickness direction and little bending deformation resulting from a small temperature difference between the top and bottom surfaces of the plate. The results show that negligible bending deformation and a uniform plastic plane strain field can be obtained by simultaneously heating the top and bottom surfaces with the same process parameters. A conventional scanning method needs a larger spot diameter and slower scanning speed under the upsetting mechanism, but a smaller spot diameter and quicker scanning speed may be selected using the simultaneous heating method, which can greatly widen the potential scope of process parameters.  相似文献   

14.
15.
田金荣  宋晏蓉  王丽 《中国光学》2014,7(2):253-259
为分析脉冲激光中常用峰值功率公式的误差,对高斯脉冲、双曲正割脉冲、洛仑兹脉冲、非对称双曲正割脉冲的常用峰值功率公式的误差进行了解析计算。结果表明:高斯脉冲、双曲正割脉冲、洛仑兹脉冲、非对称双曲正割脉冲中,常规峰值功率公式的结果与实际峰值功率的误差分别为6.3%,13.6%,22.1%,20.9%。在具体实验基础上采用数值方法分析了非常规脉冲的情形,给出了精确计算峰值功率的方法。  相似文献   

16.
Effects of process variables on laser direct formation of thin wall   总被引:2,自引:0,他引:2  
In this paper, effects of process variables on wall thickness, powder primary efficiency and speed of forming a thin metallic wall in single-pass coaxial laser cladding are investigated, and some resolution models are established and testified experimentally. With some assumptions, each of wall thickness, powder primary efficiency and formation speed can be defined as a function of the process variables. Wall thickness is equal to width of the molten pool created in single-pass laser cladding and determined by laser absorptivity, laser power, initial temperature, scanning speed and thermo-physical properties of clad material. Powder primary efficiency and formation speed are both dependent on an exponential function involving the ratio of melt pool width, which is decided by the process variables, to powder flow diameter. In addition, formation speed is influenced by powder feed rate. In present experiment, a 500 W continual-wave (CW) CO2 laser is used to produce thin-wall samples by single-pass coaxial laser cladding. The experimental results agree well with the calculation values despite some errors.  相似文献   

17.
The present investigation deals with the control of springback phenomena in the bending process of aluminium sheets by hybrid forming process. Metal substrates were pre-bent to nominal shapes on a built-ad-hoc mould after being constrained on it. Then, they were post-treated by high power diode laser to prevent the deformation of the pre-bent sheets after the release of the constraints. The extent of springback phenomena were estimated by measuring the difference between the nominal bending angles and those achieved on the unconstrained substrates after laser post-treatments. Analytical models, aimed at predicting the springback by varying the setting of the operational parameters of the forming process, were developed. Neural network solutions were also proposed to improve the matching between experimental and numerical data, with the Multi-Layer Perceptrons trained by Back-Propagation algorithm being the fittest one. On this basis, a control modulus very useful to practitioners for automation and simulation purposes was built-on.  相似文献   

18.
Mold-free micro forming using a fs laser was investigated by producing micro pits on pure aluminum foil. The characteristics of the pit profiles, their forming mechanisms, and the influences of some important parameters on the pit profiles were investigated by measuring the profiles and the surface morphologies of the pits. The microstructures of the shocked aluminum foil were observed through transmission electron microscopy (TEM). Pits obtained through fs laser shock forming are composed of two regions: the directly impacted region and the plastically bending region. Diameters of the former strongly depend on laser beam sizes. The plastically bending region has a negative effect on forming precision. Shorter laser pulse width is beneficial for narrowing the range of the plastically bending region and enhancing the forming precision. Using a single-side clamping mode can also narrow the plastically bending region through buffering the local bending. Fs laser-induced microstructures are characteristic of fragmentary short dislocation lines and parallel slip lines, which are the results of the ultrafast and ultrahigh pressure loading. The localization of the fs laser shock forming induced by ultrafast loading can enhance the precision of mold-free forming.  相似文献   

19.
Despite a lot of research done in the field of laser forming, generation of a symmetric bowl shaped surface by this process is still a challenge mainly because only a portion of the sheet is momentarily deformed in this process, unlike conventional sheet metal forming like deep drawing where the entire blank undergoes forming simultaneously reducing asymmetry to a minimum. The motion of laser beam also makes the process asymmetric. To counter these limitations this work proposes a new approach for laser forming of a bowl shaped surface by irradiating the centre of a flat circular blank with a stationary laser beam. With high power lasers, power density sufficient for laser forming, can be availed at reasonably large spot sizes. This advantage is exploited in this technique. Effects of duration of laser irradiation and beam spot diameter on the amount of bending and asymmetry in the formed surface were investigated. Laser power was kept constant while varying irradiation time. While varying laser spot diameter laser power was chosen so as to keep the surface temperature nearly constant at just below melting. Experimental conditions promoted almost uniform heating through sheet thickness. The amount of bending increased with irradiation time and spot diameter. It was interesting to observe that blanks bent towards the laser beam for smaller laser beam diameters and the reverse happened for larger spot diameters (~10 times of the sheet thickness). Effect of spot diameter variation has been explained with the help of coupled thermal-structural finite element simulations.  相似文献   

20.
In this paper, the displacement of an object is measured with a photothermal phase-modulating laser diode interferometer. A feedback control system is designed to reduce the measurement errors caused by the fluctuations in the optical wavelength of the laser diode and the vibrations of the optical components in the interferometer. A new method is proposed to enlarge the measuring range of displacement. Using this method, the measuring range is enlarged from half wavelength to nearly 125 μm and the measurement accuracy is about 1 nm. The simulation and experimental results have shown the usefulness of the method and the feedback control system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号