首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A systematic study of the kinetics of styrene emulsion polymerization in the postnucleation stage by the way of seed particle growth of monodisperse latices was undertaken, in which the colloidally important parameters were varied: Rp was independent (within limits) of (a) ionic strength, (b) pH, (c) initiator concentration (potassium persulfate), and (d) surfactant (sodium dodecyl sulfate) concentration; Rpp was independent (within limits) of (a) seed particle number concentration N, (b) oil:water phase ratio, and (c) monomer:polymer ratio; Rp was directly proportional to seed-particle surface area. The viscosity average molecular weight of the polymer formed during interval II, Mv(ij), was approximately constant and increased linearly with N. Log Mv(ij) was inversely proportional to reaction temperature; Mv(ij) was inversely proportional to initiator concentration. The overall activation energy of polymerization Ep was equal to the activation energy of propagation Ep during interval II. The value of kp at 60°C was 615 dm3 mol?1 s?1. Trace of oxygen seems to affect the average number of radicals per particle ī during interval II polymerization.  相似文献   

2.
3.
The kinetics of styrene emulsion polymerization   总被引:1,自引:0,他引:1  
  相似文献   

4.
A study has been carried out on the kinetics of persulfate-initiated emulsion polymerization of styrene in the presence of an anionic (oleate) or mixed anionic-nonionic emulsifier. In both cases it appears that Smith-Ewart kinetics are obeyed, i.e., there is a constant-rate period up to 40–50% conversion, during which there is a concomitant constant molecular weight development. The sharp increases in molecular weight with conversion reported by Grancio and Williams appear to be an artifact resulting from the use of an impure emulsifier (Triton X-100), which acts as a chain transfer agent to reduce the molecular weight by approximately an order of magnitude. Hence there does not appear to be any kinetic justification for assuming an inhomogeneous swollen latex particle (“core-shell” morphology), and normal thermodynamic considerations should still apply to this swelling phenomemon.  相似文献   

5.
Polystyrene (PS) particles were prepared via Pickering emulsion polymerization using graphene oxide (GO) as the stabilizer. The results show that pH is an important factor in the stability of Pickering emulsions. The effects of two different phase initiators, the water phase initiator potassium persulfate and the oil phase initiator azobisisobutyronitrile, on the morphology of PS particles in Pickering emulsion polymerization had been investigated in detail. Wrinkled particles were prepared using the water phase initiator, and spherical particles were prepared using the oil phase initiator. In addition, hexadecane was used as the auxiliary stabilizer in the polymerization, which narrowed the diameter distribution of the PS spheres, and the hollow PS spheres were fabricated. The size of the GO particles also influenced the final morphology of the particles. Nano-sized polymer particles were grafted onto the surface of micro-sized GO. Small GO particles were suitable for Pickering emulsion polymerization to prepare the composite particles. The thermogravimetric analysis of the prepared particles confirmed that they were PS/GO composite particles, which could have a wide range of potential applications, such as in catalysts, sensors, environmental remediation, and energy storage.  相似文献   

6.
Analyses of the oligomers formed in radiation-induced polymerization of purified styrene were performed. The principal dimeric products were cis- and trans-diphenyl-cyclobutane with a relatively small amount of 1-phenyltetralin; the trimeric products were the optical isomers of 1-phenyl-4-[1′-phenylethyl-(1′)]-tetralin in gamma-ray and 60 MeV proton irradiation. Oligomer formation increased with increasing dose, but more gradually than the linear formation of high polymer with dose. The yield was 0.25–3.1 μmol/J at low doses and decreased to an asymptotic value of 0.15 at higher doses. It appears that oligomers act as chain transfer agents during the polymerization reaction which would account for the observed decrease in molecular weight of the high polymer with increase in dose. Although the thermal and radiation-induced polymerization of styrene have different initiation steps, the oligomers produced by both reactions are similar in composition.  相似文献   

7.
The surface-active, chain transfer agent (‘transurf’) sodium ω-mercapto-decane sulfonate, SMDSo, was synthesized, purified, and its interfacial properties determined. The compound acted normally in styrene emulsion polymerization to produce extremely stable colloids containing only sulfonate ionic surface functional groups. It was then used to control the surface charge density of a model polystyrene colloid by means of seeded emulsion polymerization. Surface charge could thus be increased 16-fold over that of the seed particles, and was due solely to sulfonate groups introduced by the SMDSo. Unlike most conventional emulsion polymerizations, this technique allows one to control surface chemistry independently of particle size. To cite this article: C.C. Fifield, R.M. Fitch, C. R. Chimie 6 (2003).  相似文献   

8.
The original morphology of polytetrafluoroethylene prepared by radiation-induced emulsion polymerization was studied by electron microscopy. The morphology depends on molecular weight, which in turn depends on polymerization conditions, especially the emulsifier concentration. The molecular weight decreases with increasing emulsifier concentration. The morphology changes with molecular weight roughly as follows: fibrils below 105, rods between 105 and 5 × 105, and granular particle above 106. The crystallinity is high for all morphologies.  相似文献   

9.
The mechanism of surfactant-free emulsion polymerization of styrene   总被引:1,自引:0,他引:1  
New experimental data on the mechanism of particle formation in the surfactant-free emulsion polymerization of styrene under static conditions are described. It is shown that the concentration of styrene in the aqueous phase affects the mechanism of particle nucleation and changes in the dispersity of systems during polymerization and nucleation of particles with different properties.  相似文献   

10.
The presence of anomalous regions within polystyrene latex particles prepared in the absence of added emulsifier has been investigated. It appears that they arise through loss of monomer from particles consisting of a discrete monomer-rich region surrounded by a polymer shell. It is likely that in most cases, monomer is lost from the region on evacuation prior to electron microscope examination, although there is some evidence from γ-irradiated samples (prior to electron microscopy) that loss of monomer can also occur during storage and/or dilution of the sample. Scanning electron microscopy and carbon replication techniques have been used to determine the shapes of the voids. Gas adsorption studies and carbon replication have also served to illustrate that the presence of the regions was not due to electron-beam damage. The presence of extrusions on some samples has been attributed to incomplete loss of monomer on evacuation due to the thickness of the surrounding polymer shell.  相似文献   

11.
Continuously uniform latices were applied in an experimental study of molecular weight development in constant-rate styrene emulsion polymerization. The formulation around which this study centered exhibited Smith-Ewart, case II kinetics from zero to about 60% conversion with a constant conversion rate of 13 ± 2%/hr and a final particle diameter of 2300 Å. By utilizing an inhibitor perturbation technique, we directly confirmed that free radicals are generated from K2S2O8 by a first-order process with 100% efficiency. We further confirmed that, in contrast to current theories for constant rate polymerization, both the instantaneous values of M?n and M?v may increase 6- to 9-fold. Little or no chain branching is evidenced. We interpret these findings to mean that radicals are not utilized with 100% efficiency in emulsion polymerization.  相似文献   

12.
The kinetics of decomposition of organocobalt chelates in the pH range of 2.2–7.0 has been studied. It has been shown that the rate constant of decomposition of the octyl chelate complex at 20°C changes from ~3 × 10?3 to ~6 × 10?6 s?1 in the above pH range. The rate constants of decomposition of complexes with ethyl, octyl, and cetyl ligands, as estimated at 20°C and pH 8.3, are 1.69 × 10?4, 1.39 × 10?4, and 2.42 × 10?5 s?1, respectively. As evidenced by emission spectrometry measurements, ~100% of organocobalt chelates with ethyl and isopropyl ligands occur in the aqueous phase, while organocobalt chelates with octyl and cetyl ligands are partitioned between monomer and aqueous phases. The rates of initiation of the emulsion polymerization of styrene have been measured by the inhibited polymerization procedure. It has been demonstrated that among three tested compounds (diphenyl picryl hydrazyl, hydroquinone, and benzoquinone), benzoquinone has been found to be a suitable inhibitor for the polymerization under study. The rates of initiation of styrene polymerization at 30°C for organocobalts with ethyl, octyl, and cyclohexyl ligands are 1.0 × 10?7, 1.04 × 10?7, and 3.7 × 10?6 mol/(l s), respectively. The rate constant of decomposition of the organocobalt complex with the octyl ligand at 30°C is 2.28 × 10?5 s?1, and the efficiency of initiation with this complex is 0.95.  相似文献   

13.
It is the aim of this paper to describe the preparation of polysaccharide-coated nanoparticles by direct emulsion polymerization of styrene in the presence of native dextran. In spite of the lack of surface-active properties of native dextran, stable latexes with very low amount of coagulate were obtained. Particle size decreased with dextran concentration and molecular weight. The amount of permanently adsorbed dextran was determined by direct titration of the polysaccharide present on the surface of the nanoparticles. A maximum value of 2.5 mg m−2 was found. Zeta-potential measurements allowed us to estimate the thickness of the hydrophilic layer, which regularly increased with dextran aqueous concentration. The dextran-coated polystyrene nanoparticles were stable in concentrated NaCl solutions and could be redispersed after freeze-drying. The mechanism of chemical modification of dextran was studied by nuclear magnetic resonance and matrix-assisted laser desorption/ionization-time of flight spectrometry studies. Graft copolymers are supposed to be formed.  相似文献   

14.
The formation and growth of monodisperse polystyrene latex particles in the absence of added surfactant has been studied by sampling polymerization reactions at different times and determining the surface and bulk properties of the latex. A large number of nuclei in excess of 5 × 1012/ml were generated during the first minute of reaction, but this fell due to coagulation until a constant number (1011?1012/ml) was reached. The rate of polymerization per particle was then found to be proportional to the particle radius. Gel-permeation chromatography has shown that the initial particles consist mainly of material of MW 1000 with a small amount of polymer up to MW 106, and the presence of this low molecular weight polymer, which in many cases can still be detected after 100% conversion, is taken as being indicative of particle formation via a micellization-type mechanism involving short-chain (MW 500) free-radical oligomers. M?n values determined for the latex particles throughout the course of reactions show that the molecular weight increases to a maximum of about 105 as the particles grow. The presence of anomalous regions within the particles has been confirmed by transmission electron microscopy, scanning electron microscopy, and gas adsorption studies. It has also been found possible to re-expose these regions within apparently homogeneous particles by stirring with styrene monomer; this is indicative of a molecular weight heterogeneity within the latex particles. The presence of sulfate, carboxyl, and hydroxyl groups upon the latex particle surfaces has been determined by conductometric titration.  相似文献   

15.
The aim of this research was to prepare a monodisperse polystyrene latex without surfactants adsorbed at the particle surface. Conventional polymerization formulations usually lead to large amounts of oligomers. Furthermore, they are characterized by a low reproducibility with respect to particle size. This was overcome by using a seed latex that was crosslinked in order to overcome dissolution in the monomer phase. By adjusting the seed concentration, any desired particle size in the range 0.5–1.2 m could be obtained. The monodispersity was very good.  相似文献   

16.
Polymer particle formation in soapless emulsion polymerization for monomers that are soluble in diluent is studied theoretically and experimentally. A kinetic model is proposed assuming that polymer particles are formed by homogeneous nucleation of both growing radicals and dead polymer molecules above the critical size in solution. Based on this model, the dependence of the number of polymer particles on the concentration of initiator and monomer in solution is discussed for the polymerization system of methyl methacrylate–potassium persulfate–water. Experimental results of the number of polymer particles in this system can reasonably be interpreted by this model.  相似文献   

17.
The emulsion polymerization of styrene using the reactive surfactant sodium dodecyl allyl sulfosuccinate (TREM LF‐40) was studied. The polymerization kinetics were found to be unusual in that Rp was not directly proportional to Np (RpNp0.67). Several reasons are stated to explain the unusual kinetics, including chain transfer to TREM LF‐40, copolymerization of styrene with TREM LF‐40, and the influence of the homopolymer of TREM LF‐40 [poly(TREM)] and/or the copolymer [poly(TREM‐co‐styrene)] on the entry and exit rates of free radicals. The possibility of both chain transfer and copolymerization exists primarily at the oil/water interface, whereas both can also occur in the aqueous and monomer phases. Bulk polymerizations of styrene in the presence of TREM LF‐40 and poly(TREM) were conducted, and the results show that the reaction rate decreased for the styrene/TREM LF‐40 system. Latex characterization by serum replacement and titration measurements provided evidence for the chemical bonding of TREM LF‐40 to the polymer particles. The fraction of chemically bound reactive surfactant decreased with increasing surfactant concentration and increased with increasing initiator concentration. Relatively high contact angles of water on films cast from the latexes showed that TREM LF‐40 did not migrate significantly to the surface of the film, which was consistent with the latex‐surface characterization results. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3093–3105, 2001  相似文献   

18.
Comprehensive experimental results are presented for surfactant-free emulsion polymerization of styrene with water-soluble, ionic initiators. Special emphasis is placed on the particle nucleation, the chemical structure of the nucleating species, the change of latex, particle and polymer properties as well as the development of particle morphology with polymerization time. Under special conditions the appearance in transmission electron microscopy pictures of less electron dense anomalous particles is observed. The formation of these structures is discussed and possible formation mechanisms presented. Dialysis of the latexes changed their properties drastically as they became unstable to coagulation. The original latexes did not change their properties over several months. Received: 25 November 1998 Accepted in revised form: 25 January 1999  相似文献   

19.
The effect of the pristine sodium montmorillonite (Na+-MMT) on the styrene emulsion polymerizations with different concentrations of SDS ([SDS]) was investigated. At constant [SDS], the polymerization rate is faster for the run with 1 wt.% Na+-MMT compared to the counterpart without Na+-MMT. Micelle nucleation predominates in the polymerizations with [SDS] ≧ 13 mM. On the other hand, the contribution of the polymerization associated with the Na+-MMT platelets increases significantly when [SDS] decreases from 13 to 9 mM. At [SDS] (e.g., 2 mM) < CMC, homogeneous nucleation controls the particle formation process and polymerization kinetics. Moreover, the contribution of the Na+-MMT platelets that act as extra reaction loci to the polymerization kinetics is even comparable to the run in the absence of Na+-MMT. The resultant polymer particle size, polymer molecular weight and zeta potential were characterized and a preliminary model was developed to qualitatively study the differences between the polymerizations in the presence and absence of 1 wt.% Na+-MMT.  相似文献   

20.
The concentrations and probable nature of charged oligomers formed by aqueous-phase termination in the persulfate-initiated emulsion polymerization of styrene were measured by isotachophoresis. Isotachophoresis has some advantages over other techniques (e.g., GPC, UV spectroscopy) in that it separates species according to their molecular weight, geometry, and charge. The charged water-soluble oligomeric species were detected in experiments in which particles were nucleated in a surfactant-free environment. Identification of the moieties present was made by comparison with model compounds. Evidence was found for bimolecular combination as a major mechanism of termination in the aqueous phase, although the possibility of disproportionation could not be ruled out. The species formed in the aqueous phase under saturated monomer conditions were found to be subject to further reaction towards the end of polymerization. The surface adsorption characteristics of the compounds formed were compared with those of known surfactants and showed good agreement with the assumptions in the model of Maxwell et. al. [Macromolecules, 24 , 1629 (1991)] for initiator efficiencies in emulsion polymerization. The relatively large concentrations of nonradical aqueous–soluble oligomeric compounds demonstrate conclusively that initiator efficiencies are not 100%, as is often assumed in such systems. © 1993 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号