首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 161 毫秒
1.
Comparative MS/MS studies of singly and doubly charged electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) precursor peptide ions are described. The spectra from these experiments have been evaluated with particular emphasis on the data quality for subsequent data processing and protein/amino acid sequence identification. It is shown that, once peptide ions are formed by ESI or MALDI, their charge state, as well as the collision energy, is the main parameter determining the quality of collision-induced dissociation (CID) MS/MS fragmentation spectra of a given peptide. CID-MS/MS spectra of singly charged peptides obtained on a hybrid quadrupole orthogonal time-of-flight mass spectrometer resemble very closely spectra obtained by matrix-assisted laser desorption/ionization post-source decay time-of-flight mass spectrometry (MALDI-PSD-TOFMS). On the other hand, comparison of CID-MS/MS spectra of either singly or doubly charged ion species shows no dependence on whether ions have been formed by ESI or MALDI. This observation confirms that, at the time of precursor ion selection, further mass analysis is effectively decoupled from the desorption/ionization event. Since MALDI ions are predominantly formed as singly charged species and ESI ions as doubly charged, the associated difference in the spectral quality of MS/MS spectra as described here imposes direct consequences on data processing, database searching using ion fragmentation data, and de novo sequencing when ionization techniques are changed.  相似文献   

2.
We developed an efficient and convenient strategy for protein identification and glycosylation analysis of a small amount of unknown glycoprotein in a biological sample. The procedure involves isolation of proteins by electrophoresis and mass spectrometric peptide/glycopeptide mapping by LC/ion trap mass spectrometer. For the complete glycosylation analysis, proteins were extracted in intact form from the gel, and proteinase-digested glycoproteins were then subjected to LC/multistage tandem MS (MSn) incorporating a full mass scan, in-source collision-induced dissociation (CID), and data-dependent MSn. The glycopeptides were localized in the peptide/glycopeptide map by using oxonium ions such as HexNAc+ and NeuAc+, generated by in-source CID, and neutral loss by CID-MS/MS. We conducted the search analysis for the glycopeptide identification using search parameters containing a possible glycosylation at the Asn residue with N-acetylglucosamine (203 Da). We were able to identify the glycopeptides resulting from predictable digestion with proteinase. The glycopeptides caused by irregular cleavages were not identified by the database search analysis, but their elution positions were localized using oxonium ions produced by in-source CID, and neutral loss by the data-dependent MSn. Then, all glycopeptides could be identified based on the product ion spectra which were sorted from data-dependent CID-MSn spectra acquired around localized positions. Using this strategy, we successfully elucidated site-specific glycosylation of Thy-1, glycosylphosphatidylinositol (GPI)-anchored proteins glycosylated at Asn23, 74, and 98, and at Cys111. High-mannose-type, complex-type, and hybrid-type oligosaccharides were all found to be attached to Asn23, 74 and 98, and four GPI structures could be characterized. Our method is simple, rapid and useful for the characterization of unknown glycoproteins in a complex mixture of proteins.  相似文献   

3.
The characterization of glycosylation in proteins by mass spectrometry (MS) is often impeded by strong suppression of ionization of glycopeptides in the presence of non-glycosylated peptides. Glycopeptides with a large carbohydrate part and a short peptide backbone are particularly affected by this problem. To meet the goal of generating mass spectra exhibiting glycopeptide coverages as complete as possible, derivatization of glycopeptides offers a practical way to increase their ionization yield. This paper investigated derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) which is a rapid labeling technique commonly used for fluorescence detection in high-performance liquid chromatography (HPLC) and capillary electrophoresis (CE). As test samples we used peptides and glycopeptides obtained by enzymatic digestion of three different glycoproteins, i.e., human antithrombin, chicken ovalbumin, and bovine alpha1-acid-glycoprotein. It was found that AQC derivatization resulted in strongly increased signal intensities when analyzing small peptides and glycopeptides by matrix-assisted laser desorption/ionization (MALDI)-MS. For these compounds the limit of detection could be reduced to low fmol amounts. Without derivatization only glycopeptides containing large peptide backbones were detected by MALDI-MS. This effect was even significant when glycopeptides were pre-separated and enriched by means of lectin affinity chromatography before MALDI-MS analysis and when using electrospray ionization (ESI). This labeling method, applied in combination with MS detection for the first time, was found to be well suited for the enhancement of detection sensitivity for small glycopeptides in MALDI-MS analysis and thus for reducing the need for pre-separation steps.  相似文献   

4.
5.
A matrix-assisted laser desorption/ionization (MALDI) source has been coupled to a tandem quadrupole/time-of-flight (QqTOF) mass spectrometer by means of a collisional damping interface. Mass resolving power of about 10,000 (FWHM) and accuracy in the range of 10 ppm are observed in both single-MS mode and MS/MS mode. Sub-femtomole sensitivity is obtained in single-MS mode, and a few femtomoles in MS/MS mode. Both peptide mass mapping and collision-induced dissociation (CID) analysis of tryptic peptides can be performed from the same MALDI target. Rapid spectral acquisition (a few seconds per spectrum) can be achieved in both modes, so high throughput protein identification is possible. Some information about fragmentation patterns was obtained from a study of the CID spectra of singly charged peptides from a tryptic digest of E. coli citrate synthase. Reasonably successful automatic sequence prediction (>90%) is possible from the CID spectra of singly charged peptides using the SCIEX Predict Sequence routine. Ion production at pressures near 1 Torr (rather than in vacuum) is found to give reduced metastable fragmentation, particularly for higher mass molecular ions. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

6.
Mass spectrometry (MS) is used to quantify the relative distribution of glycans attached to particular protein glycosylation sites (micro‐heterogeneity) and evaluate the molar site occupancy (macro‐heterogeneity) in glycoproteomics. However, the accuracy of MS for such quantitative measurements remains to be clarified. As a key step towards this goal, a panel of related tryptic peptides with and without complex, biantennary, disialylated N‐glycans was chemically synthesised by solid‐phase peptide synthesis. Peptides mimicking those resulting from enzymatic deglycosylation using PNGase F/A and endo D/F/H were synthetically produced, carrying aspartic acid and N‐acetylglucosamine‐linked asparagine residues, respectively, at the glycosylation site. The MS ionisation/detection strengths of these pure, well‐defined and quantified compounds were investigated using various MS ionisation techniques and mass analysers (ESI‐IT, ESI‐Q‐TOF, MALDI‐TOF, ESI/MALDI‐FT‐ICR‐MS). Depending on the ion source/mass analyser, glycopeptides carrying complex‐type N‐glycans exhibited clearly lower signal strengths (10–50% of an unglycosylated peptide) when equimolar amounts were analysed. Less ionisation/detection bias was observed when the glycopeptides were analysed by nano‐ESI and medium‐pressure MALDI. The position of the glycosylation site within the tryptic peptides also influenced the signal response, in particular if detected as singly or doubly charged signals. This is the first study to systematically and quantitatively address and determine MS glycopeptide ionisation/detection strengths to evaluate glycoprotein micro‐heterogeneity and macro‐heterogeneity by label‐free approaches. These data form a much needed knowledge base for accurate quantitative glycoproteomics. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
A study has been undertaken to evaluate the usefulness of MALDI Q-TOF data for protein identification. The comparison of MS data of protein digests obtained on a conventional MALDI TOF instrument to the MS data from the MALDI Q-TOF reveal peptide patterns with similar intensity ratios. However, comparison of MS/MS Q-TOF data produced by nanoelectrospray versus MALDI reveals striking differences. Peptide fragment ions obtained from doubly charged precursors produced by nanoelectrospray are mainly y-type ions with some b-ions in the lower mass range. In contrast, peptide fragment ions produced from the singly charged ions originating from the MALDI source are a mixture of y-, b- and a-ions accompanied by ions resulting from neutral loss of ammonia or water. The ratio and intensity of these fragment ions is found to be strongly sequence dependent for MALDI generated ions. The singly charged peptides generated by MALDI show a preferential cleavage of the C-terminal bond of acidic residues aspartic and glutamic acid and the N-terminal bond of proline. This preferential cleavage can be explained by the mobile proton model and is present in peptides that contain both arginine and an acidic amino acid. The MALDI Q-TOF MS/MS data of 24 out of 26 proteolytic peptides produced by trypsin or Asp-N digestions were successfully used for protein identification via database searching, thus indicating the general usefulness of the data for protein identification. De novo sequencing using a mixture of 160/18O water during digestion has been explored and de novo sequences for a number of peptides have been obtained.  相似文献   

8.
We describe a new interface for a prototype quadrupole-quadrupole-time-of-flight (TOF) mass spectrometer (Centaur, Sciex) that allows rapid switching between electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) modes of operation. Instrument performance in both modes is comparable (i.e., resolution approximately 10,000 FWHM, mass accuracy <10 ppm, sensitivity approximately 1 fmol) because the ion source is decoupled from the TOF mass analyzer by extensive gas collisions in the quadrupole stages of the instrument. The capacity to obtain side-by-side high quality ESI and MALDI mass spectra from a single proteolytic mixture greatly facilitates the identification of proteins and elucidation of their primary structures. Improved strategies for protein identification result from this ability to measure spectra using both ionization modes in the same instrument and to perform MS/MS on singly charged as well as multiply charged ions. Examples are provided to demonstrate the utility and performance of the modified instrument.  相似文献   

9.
Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI TOF MS) was used to analyze a series of synthetic organic ions bearing fixed multiple charges. Despite the multiple intrinsic charges, only singly charged ions were recorded in each case. In addition to the pseudo‐molecular ions formed by counterion adduction, deprotonation and electron capture, a number of fragment ions were also observed. Charge splitting by fragmentation was found to be a viable route for charge reduction leading to the formation of the observed singly charged fragment ions. Unlike multivalent metal ions, organic ions can rearrange and/or fragment during charge reduction. This fragmentation process will evidently complicate the interpretation of the MALDI MS spectrum. Because MALDI MS is usually considered as a soft ionization technique, the fragment ion peaks can easily be erroneously interpreted as impurities. Therefore, the awareness and understanding of the underlying MALDI‐induced fragmentation pathways is essential for a proper interpretation of the corresponding mass spectra. Due to the fragment ions generated during charge reduction, special care should be taken in the MALDI MS analysis of multiply charged ions. In this work, the possible mechanisms by which the organic ions bearing fixed multiple charges fragment are investigated. With an improved understanding of the fragmentation mechanisms, MALDI TOF MS should still be a useful technique for the characterization of organic ions with fixed multiple charges.  相似文献   

10.
Electrospray ionization (ESI) of peptides and proteins produces a series of multiply charged ions with a mass/charge (m/z) ratio between 500 and 2000. The resulting mass spectra are crowded by these multiple charge values for each molecular mass and an isotopic cluster for each nominal m/z value. Here, we report a new algorithm simultaneously to deconvolute and deisotope ESI mass spectra from complex peptide samples based on their mass-dependent isotopic mean pattern. All signals corresponding to one peptide in the sample were reduced to one singly charged monoisotopic peak, thereby significantly reducing the number of signals, increasing the signal intensity and improving the signal-to-noise ratio. The mass list produced could be used directly for database searching. The developed algorithm also simplified interpretation of fragment ion spectra of multiply charged parent ions.  相似文献   

11.
A novel method for separating ions according to their charge state using a quadrupole time-of-flight mass spectrometer is presented. The benefits of charge state separation are particularly apparent in protein identification applications at low femtomole concentration levels, where in conventional TOF MS spectra peptide ions are often lost in a sea of chemical noise. When doubly and triply charged tryptic peptide ions need to be filtered from singly charged background ions, the latter are suppressed by two to three orders of magnitude, while from 10-50% of multiply charged ions remain. The suppression of chemical noise reduces the need for chromatography and can make this experimental approach the electrospray equivalent of conventional MALDI peptide maps. If unambiguous identification cannot be achieved, MS/MS experiments are performed on the precursor ions identified through charge separation, while the previously described Q2-trapping duty cycle enhancement is tuned for approximately 1.4 of the precursor m/z to enhance intensities of ions with m/z values above that of the precursor. The resulting product ion spectra contain few fragments of impurities and provide quick and unambiguous identification through database search. The multiple charge separation technique requires minimal tuning and may become a useful tool for analysis of complex mixtures.  相似文献   

12.
In order to investigate gas‐phase fragmentation reactions of phosphorylated peptide ions, matrix‐assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) tandem mass (MS/MS) spectra were recorded from synthetic phosphopeptides and from phosphopeptides isolated from natural sources. MALDI‐TOF/TOF (TOF: time‐of‐flight) spectra of synthetic arginine‐containing phosphopeptides revealed a significant increase of y ions resulting from bond cleavages on the C‐terminal side of phosphothreonine or phosphoserine. The same effect was found in ESI‐MS/MS spectra recorded from the singly charged but not from the doubly charged ions of these phosphopeptides. ESI‐MS/MS spectra of doubly charged phosphopeptides containing two arginine residues support the following general fragmentation rule: Increased amide bond cleavage on the C‐terminal side of phosphorylated serines or threonines mainly occurs in peptide ions which do not contain mobile protons. In MALDI‐TOF/TOF spectra of phosphopeptides displaying N‐terminal fragment ions, abundant b–H3PO4 ions resulting from the enhanced dissociation of the pSer/pThr–X bond were detected (X denotes amino acids). Cleavages at phosphoamino acids were found to be particularly predominant in spectra of phosphopeptides containing pSer/pThr–Pro bonds. A quantitative evaluation of a larger set of MALDI‐TOF/TOF spectra recorded from phosphopeptides indicated that phosphoserine residues in arginine‐containing peptides increase the signal intensities of the respective y ions by almost a factor of 3. A less pronounced cleavage‐enhancing effect was observed in some lysine‐containing phosphopeptides without arginine. The proposed peptide fragmentation pathways involve a nucleophilic attack by phosphate oxygen on the carbon center of the peptide backbone amide, which eventually leads to cleavage of the amide bond. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Multistage mass spectrometry, as implemented using low-energy collision-induced dissociation (CID) analysis in three-dimensional (3D) quadrupole ion traps (QITs), has become a powerful tool for the investigation of protein glycosylation. In addition to the well-known combination of QITs with electrospray ionization (ESI), also a matrix-assisted laser desorption/ionization--quadrupole ion trap--reflectron time-of-flight (MALDI-QIT-rTOF) mass spectrometer has recently become available. This study systematically investigates the differences between these types of instrument, as applied to characterization of glycopeptides from human antithrombin. The glycopeptides were obtained by tryptic digestion followed by lectin-affinity purification. Some significant differences between the ESI-QIT and MALDI-QIT-rTOF approaches appeared, most of them are causally related to the desorption/ionization process. The combination of a vacuum MALDI source with an ion-trap analyzer accentuates some characteristic differences between MALDI and ESI due the longer time frame needed for the trapping process. In contrast to ESI, MALDI generated ions that exhibited considerable metastable fragmentation during trapping. The long time span of the QIT process (ms range) compared with that for conventional rTOF experiments (micros range) significantly magnified the extent of this metastable fragmentation. With the investigated glycopeptides, a complete depletion of the terminal sialic acids of the glycopeptides as well as a variety of other fragment ions was already found in the MS1 spectra from the MALDI-QIT-rTOF instrument. The positive ion low-energy CID spectra (MS2) of the selected glycopeptides obtained using the two different QIT equipped instruments were found to be quite similar. In both approaches, fragmentation of the glycan and peptide structures occurred sequentially, allowing unambiguous sequence determination. In the case of ESI-QIT-MS, fragmentation of the glycan structure occurred at the MS2 stage and fragmentation of the peptide structure was obtained only at the MS3 stage, which indicates the necessity of multistage CID experiments for complete structure elucidation. The MALDI-QIT-rTOF instrument yielded both kinds of fragments at the MS2 stage but without mutual interference.  相似文献   

14.
Collision-induced dissociation of singly charged peptide ions produced by resonant excitation in a matrix-assisted laser desorption/ionization (MALDI) ion trap mass spectrometer yields relatively low complexity MS/MS spectra that exhibit highly preferential fragmentation, typically occurring adjacent to aspartyl, glutamyl, and prolyl residues. Although these spectra have proven to be of considerable utility for database-driven protein identification, they have generally been considered to contain insufficient information to be useful for extensive de novo sequencing. Here, we report a procedure for de novo sequencing of peptides that uses MS/MS data generated by an in-house assembled MALDI-quadrupole-ion trap mass spectrometer (Krutchinsky, Kalkum, and Chait Anal. Chem. 2001, 73, 5066-5077). Peptide sequences of up 14 amino acid residues in length have been deduced from digests of proteins separated by SDS-PAGE. Key to the success of the current procedure is an ability to obtain MS/MS spectra with high signal-to-noise ratios and to efficiently detect relatively low abundance fragment ions that result from the less favorable fragmentation pathways. The high signal-to-noise ratio yields sufficiently accurate mass differences to allow unambiguous amino acid sequence assignments (with a few exceptions), and the efficient detection of low abundance fragment ions allows continuous reads through moderately long stretches of sequence. Finally, we show how the aforementioned preferential cleavage property of singly charged ions can be used to facilitate the de novo sequencing process.  相似文献   

15.
The ionization and fragmentation behaviors of carbohydrate derivatives prepared by reaction with 2-aminobenzamide (AB), 1-phenyl-3-methyl-5-pyrazolone (PMP), and phenylhydrazine (PHN) were compared under identical mass spectrometric conditions. It has been shown that the intensities of signals in MS spectra depend on the kind of saccharides investigated and reducing end labels used. PMP sialyllactose, when ionized by ESI/MALDI, produced a mixture of [M + H]+, [M + Na]+, [M - H + 2Na]+ ions in the positive mode and [M - H]-, [M + Na - 2H]- ions in the negative mode. The AB and PHN derivatives formed abundant [M + H]+ and [M - H]- ions in ESI, and by matrix-assisted laser desorption/ionization (MALDI) produced abundant [M + Na]+ ions. PMP- and reduced AB-sialyllactose produced only Y-type fragment ions under both MS/MS sources. In the electrospray ionization (ESI)-MS/MS spectrum of PHN-sialyllactose, abundant ions corresponded to B, Z cleavages and in its MALDI-MS/MS spectrum, the abundant ions were consistent with Y glycosidic cleavages with the concurrence of B, C, and cross-ring fragment ions. In the MALDI-MS spectra of oligosaccharides acquired immediately after derivatization, it was possible to detect only PHN derivatives. After purification, spectra of all three types of derivatives showed high signal-to-noise ratios with the most abundant ions observed for AB reduced saccharides. [M + Na]+ ions were the dominant products and their fragmentation patterns were influenced by the type of the labeling and the kind of oligosaccharide considered. In the MALDI-PSD and -MS/MS spectra of AB-derivatized glycans, higher m/z fragment ions corresponded to B and Y cleavages and the loss of bisecting GlcNAc appeared as a weak signal or was not detected at all. Fragmentation patterns observed in the spectra of hybrid/complex PHN and PMP glycans were more comparable-higher m/z fragments corresponded to B and C glycosidic cleavages. For PHN glycans, the abundance of ions resulting from the loss of bisecting GlcNAc depended on the number of residues linked to the 6-positioned mannose. Also, PHN and PMP derivatives produced cross-ring cleavages with abundances higher than observed in the spectra of AB derivatized oligosaccharides. For high-mannose glycans, the most informative cleavages were provided by AB and PHN type of labeling. Here, PMP produced dominant Y-cleavages from the chitobiose while other ions produced weak signals.  相似文献   

16.
Thyroid-stimulating hormone is a vital component of the regulatory mechanism that maintains the structure and function of the thyroid gland and governs thyroid hormone release. In this paper we report the first detailed structural characterization of the N-linked oligosaccharides of recombinant human thyroid-stimulating hormone (rhTSH). Using a strategy combining mass spectrometric analysis and sequential exoglycosidase digestion, we have defined the structures of the N-glycans released from recombinant human thyrotropin by peptide N-glycosidase F. All glycans are complex-type glycans and are mainly of the bi- and triantennary type with variable degrees of fucosylation and sialylation. The major non-reducing epitope in the complex-type glycans is: NeuAcalpha2-3Galbeta1-4GlcNAc (sialylated LacNAc). The carbohydrate microheterogeneity at the three glycosylation sites was studied using reversed-phase high-performance liquid chromatography (RP-HPLC), concanavalin A affinity chromatography and mass spectrometric techniques, including both matrix-assisted laser desorption/ionization (MALDI) and electrospray. rhTSH was reduced, carboxymethylated and then digested with trypsin. The mixture of peptides and glycopeptides was subjected to RP-HPLC and the structures of the glycopeptides were determined by MALDI in conjunction with on-target exoglycosidase digestions. After PNGase F digestion, the peptide moiety of the glycopeptide was determined by the presence of the b- and y-series ions derived from its amino acid sequence in the quadrupole time-of-flight tandem mass (QTOF-MS/MS) spectrum. Glycosylation sites Asn-alpha52 and Asn-alpha78 contain mainly bi- and triantennary complex-type glycans. Only glycosylation site Asn-alpha52 bears fucosylated N-glycans. Minor tetraantennary complex structures were also observed on both glycosylation sites. Profiling of the carbohydrate moieties of Asn-beta23 indicates a large heterogeneity. Bi-, tri-, and tetraantennary N-glycans were present at this site. These data demonstrate site-specificity of glycosylation in the alpha subunit but not in the beta subunit of rhTSH with Asn-alpha52 bearing essentially di- and triantennary glycans with or without core fucosylation and bi- and triantennary glycans with no core fucosylation being attached to Asn-alpha78.  相似文献   

17.
Rapid identification of glycosylation sites of glycoproteins is urgently needed in glycoproteomics study. In the present work, a rapid and simple method based on non-specific digestion of gel-separated glycoproteins and matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry was described, which can efficiently identify the N-linked glycosylation sites. One-step in-gel digestion of Ribonuclease B (RNase B) by proteinase K was employed to generate glycopeptides with short and discrepant peptide composition. When compared with glycopeptides prepared by two-step in gel-digestion using trypsin-proteinase K or trypsin-pronase, the direct proteinase K treatment showed obvious superiority in both glycopeptide recovery and preparation simplicity. Most importantly, it helps to generate greater variety of glycopeptide series with rich information for glycosylation site identification. In addition, binary matrices 5-chloro-2-mercaptobenzothiazole (CMBT) /2,5-dihydroxybenzoic acid (DHB) were found to form homogeneous microcrystal on the target with the purified glycopeptides, leading to improved detection sensitivity. Thus, the present work provides an optimized solution to speed up the characterization of N-linked glycosylation sites in glycoproteins.  相似文献   

18.
Glycopeptides derived from ribonuclease B and ovomucoid have been subjected to collision-induced dissociation (CID) in the second quadrupole of a triple quadrupole mass spectrometer. Doubly charged parent ions gave predictable fragmentation that yielded partial sequence information of the attached oligosaccharide as Hex and HexNAc units. Common oxonium ions are observed in the product ion mass spectra of the glycopeptides that correspond to HexNAc+ (m/z 204) and HexHexNAc+ (m/z 366). A strategy for locating the glycopeptides in the proteolytic digest mixtures of glycoproteins by ions spray liquid chromatography mass spectrometry (LC/MS) is described by utilizing CID in the declustering region of the atmospheric pressure ionization mass spectrometer to produce these characteristic oxonium ions. This LC/CID/MS approach is used to identify glycopeptides in proteolytic digest mixtures of ovomucoid, asialofetuin, and fetuin. LC/CID/MS in the selected ion monitoring mode may be used to identify putative glycopeptides from the proteolytic digest of fetuin.  相似文献   

19.
Mechanistic arguments relative to matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) address observations that predominately singly charged ions are detected. However, recently a matrix assisted laser ablation method, laserspray ionization (LSI), was introduced that can use the same sample preparation and laser as MALDI, but produce highly charged ions from proteins. In MALDI, ions are generated from neutral molecules by the photon energy provided to a matrix, while in LSI ions are produced inside a heated inlet tube linking atmospheric pressure and the first vacuum region of the mass spectrometer. Some LSI matrices also produce highly charged ions with MALDI ion sources operated at intermediate pressure or high vacuum. The operational similarity of LSI to MALDI, and the large difference in charge states observed by these methods, provides information of fundamental importance to proposed ionization mechanisms for LSI and MALDI. Here, we present data suggesting that the prompt and delayed ionization reported for vacuum MALDI are both fast processes relative to producing highly charged ions by LSI. The energy supplied to produce these charged clusters/droplets as well as their size and time available for desolvation are determining factors in the charge states of the ions observed. Further, charged droplets/clusters may be a common link for ionization of nonvolatile compounds by a variety of MS ionization methods, including MALDI and LSI.  相似文献   

20.
A one-step phosphoryl derivatization method has been used in a peptide sequencing procedure for electrospray ionization tandem mass spectrometry (ESI-MS/MS). The sodiated derivatized peptides exhibit very simple dissociation patterns, in which two kinds of fragment ions, [b(n) + OH + Na]+ and [a(n) + Na]+, are formed. Since the amino acid residues are lost sequentially from the C-terminus, peptide sequences can be identified easily. The fragmentation efficiency of peptides increased as a result of the phosphorylation, and also provided peaks of useful intensity at lower m/z. A peptide with lysine at the C-terminus was derivatized and analyzed by ESI-MS/MS. Similar mass spectra, from which the sequence could be read out, were obtained. This is a novel derivatization method yielding neutral derivatives that should be suitable for peptide sequencing by LC/ESI-MS/MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号