首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Differential mobility analysis (DMA) is used to measure on-line the size distributions of inception particles in atmospheric pressure premixed ethylene air flames ranging from C/O = 0.61 to 0.69, just at the onset of soot formation. DMA is also used, in combination with electrospray, to measure the size distributions of suspended flame products captured in water samples. The DMA systems used for this work employ detectors sensitive to the full range of molecular clusters/nanoparticles in gas-to-particle conversion processes (as small as about 1 nm) and they have much larger sheath gas flow rates than is typically used to reduce losses and peak broadening by diffusion. The measured size distributions show that the first particles observed in flames have a size of 2 nm, consistent with previous in situ measurements by light scattering and extinction (LSE) and the off-line measurements of material captured in water samples from the same flames. For richer flames, the quantity of the 2 nm particles measured increases, and the width of its size distribution shifts asymmetrically toward larger sizes. A numerical coagulation model assuming size-dependent coagulation efficiency predicts well the experimentally measured size distributions in the flames examined. Similarly, the slightly larger size distributions measured by atomic force microscopy of inception particles deposited on surfaces can also be attributed to the size-dependent coagulation/adhesion efficiency. The results imply that the smaller nanoparticles formed in combustion processes have a longer lifetime than those larger than 6-7 nm and may play an important role in the formation of fine organic carbon particulate in the atmosphere.  相似文献   

2.
The mechanism of ultrafine (<100 nm) SiO2 particle production under thermal arc plasma conditions is studied by modelling. Two cases of the process are considered in the model: (i) when it is determined as a pure free-molecular coagulation; (ii) when the coagulation is influenced by the interparticle forces. The Hamaker formula is used to present the van der Waals forces between the particles. Particle size distribution functions (PSDF) are calculated for both cases. It is shown that inclusion of the interparticle interactions does not affect the self-preservation of the PSDF. The mean particle sizes are obtained from the PSDF and compared. Higher values are observed in the case that includes van der Waals forces. Comparison between experimental and calculated PSDF shows better agreement in the case considering interparticle forces.  相似文献   

3.
Spectral optical techniques are combined to characterise the distribution of large-molecule soot precursors, nanoparticles of organic carbon, and soot in two turbulent non-premixed ethylene flames with differing residence times. Laser-induced fluorescence, laser-induced incandescence and light scattering are used to define distributions across the particle size distribution. From the scattering and laser-induced emission measurements it appears that two classes of particles are formed. The first ones are preferentially formed in the fuel-rich region of the flame closer to the nozzle, have sizes of the order of few nanometers but are not fully solid particles, because the constituent molecules still maintain their individual identity exhibiting strong broadband fluorescence in the UV. The second class of particles constituted by solid particles, with sizes of the order of tens of nanometers are able to absorb a sufficient number of photons to be heated to incandescent temperatures. These larger particles are formed at larger residence times in the flame since they are the result of slow growth processes such as coagulation or carbonization. The flames are also modeled in order to produce mixture fraction maps. A new discovery is that nanoparticles of organic carbon concentration, unlike soot, does correlate well with mixture fraction, independent of position in the flame. This is likely to be a significant benefit to future modelling of soot inception processes in turbulent non-premixed flames.  相似文献   

4.
The contributions of van der Waals, Coulomb, and polarization interactions between nanometersized particles to the particle coagulation rate in both free-molecular and continuum regimes are analyzed for particle charges of various magnitudes and signs. Analytical expressions are obtained for the coagulation rate constant between particles whose interaction in the free-molecular regime is described by a singular potential. It is shown that van der Waals and polarization forces significantly increase the coagulation rate between a neutral and a charged particle (by a factor of up to 10) and can even suppress the Coulomb repulsion between like-charged particles of widely different sizes.  相似文献   

5.
This study demonstrates the major differences in the evolution of the particle size distributions (PSDs), both measured and modeled, of soot in premixed benzene and ethylene flat flames. In the experiments, soot concentration and PSDs were measured by using a scanning mobility particle sizer (SMPS, over the size range of 3-80 nm). The model employed calculations of gas phase species coupled with a discrete sectional approach for the gas-to-particle conversion. The model includes reaction pathways leading to the formation of nano-sized particles and their coagulation to larger soot particles. The particle size distribution, both experimental and modeled, evolved from a single particle mode (the nucleation mode) to a bimodal size distribution. An important distinction between the results for the ethylene and benzene flames is the behavior of the nucleation mode which persists at all heights above the burner (HAB) for ethylene whereas it was greatly suppressed at greater HAB for the benzene flames. The explanation for the decreased nucleation mode at higher elevations in the benzene flame is that the aromatics are consumed in the oxidation zone of the flame. Fair predictions of particle-phase concentrations and particle sizes in the two flames were obtained with no adjustments to the kinetic scheme. In agreement with experimental data, the model predicts a higher formation of particulate in the benzene flame as compared with the ethylene flame.  相似文献   

6.
In this work we compare the results of several nanoparticle measurement techniques with the aim of investigating the formation of nanoparticles in non-sooting to slightly sooting flames. In slightly sooting conditions there is quite good agreement between Differential Mobility Analyser (DMA), Atomic Force Microscopy (AFM), and optical measurements on particle size and concentration. However, in rich flames below the onset of soot, DMA measures a strong drop-off in the total particle volume fraction at low fuel to air mixtures, which is not observed in optical or AFM measurements that detect a more gradual decrease in particle concentration with decreasing C/O and almost constant spectroscopic properties. The disagreement is significantly larger than experimental error and is only observed when the particle size distribution includes solely particles smaller than about 3 nm.Particle losses in the DMA sampling system does not seem to be the only possible reason for justifying the discrepancy with the other techniques. Further investigations are necessary in order to characterize chemically and physically this class of nanoparticles which constitute the earliest stage in the formation of particulate carbon.  相似文献   

7.
8.
English ivy (Hedera helix) is well known for its ability to climb onto and strongly adhere to a variety of solid substrates. It has been discovered that the ivy aerial rootlet secretes an adhesive composed of polysaccharide and spherical nanoparticles. This study aims to characterize the mechanical properties of the nanocomposite adhesive using atomic force microscopy (AFM). The adhesive was first imaged by AFM to visualize the nanocomposite. Mechanical properties were then determined at various time points, from secretion to hardening. The experimental results indicate that the ivy adhesive exhibited strong adhesion strength and high elasticity. There was a decrease in adhesive force over time, from 298 to 202 nN during the 24-h study. Accompanying with it were the limited changes in extension length and Young’s modulus. The limited curing process of the ivy adhesive helps fill gaps in the attaching surface, leading to more intimate contact and increased van der Waals interactions with the surface. However, study based on a mechanical model indicated that van der Waals force alone is not significant enough to account for all of the measured force. Other chemical interactions and cross linking likely contribute to the strong adhesion strength of ivy.  相似文献   

9.
Particle size distribution functions of nascent soot formed in four burner-stabilized, premixed ethylene-oxygen-argon flames were studied in a spatially resolved manner by online sampling/scanning mobility particle sizer. Particle morphology was analyzed by atomic force microscopy (AFM) of substrate-deposited samples. Two of the four flames were doped with benzene. An aerosol electrometer is introduced to extend the lower detection limit to around 1.5 nm in diameter. The results show that the bimodal behavior of particle size is applicable to all premixed ethylene flames studied. The variation of the size distribution from flame to flame is conclusively attributed to flame temperature variation. Under the condition of an equal carbon concentration, benzene doping leads to negligible changes in the characteristics of the size distribution. For all flames studied, AFM observations show that nascent soot is liquid-like and spreads extensively upon impact on a substrate surface.  相似文献   

10.
This study integrates new and existing numerical modeling and experimental observations to provide a consistent explanation to observations pertaining flame length and soot volume fractions for laminar diffusion flames. Integration has been attempted by means of scaling analysis. Emphasis has been given to boundary layer flames. For the experiments, ethylene is injected through a flat porous burner into an oxidizer flowing parallel to the burner surface. The oxidizer is a mixture of oxygen and nitrogen, flowing at various velocities. All experiments were conducted in microgravity to minimize the role of buoyancy in distorting the aerodynamics of the flames. A previous numerical study emphasizing fuel transport was extended to include the oxidizer flow. Fictitious tracer particles were used to establish the conditions in which fuel and oxidizer interact. This allowed establishing regions of soot formation and oxidation as well as relevant characteristic length and time scales. Adequate scaling parameters then allow to establish explanations that are consistent for different burner configurations as well as “open-tip” and “closed-tip” flames.  相似文献   

11.
In this paper we make use of a detailed particle model and stochastic numerical methods to simulate the particle size distributions of soot particles formed in laminar premixed flames. The model is able to capture the evolution of mass and surface area along with the full structural detail of the particles. The model is validated against previous models for consistency and then used to simulate flames with bimodal and unimodal soot particle distributions. The change in morphology between the particles from these two types of flames provides further evidence of the interplay among nucleation, coagulation, and surface rates. The results confirm the previously proposed role of the strength of the particle nucleation source in defining the instant of transition from coalescent to fractal growth of soot particles.  相似文献   

12.
In this work we present the first infrared investigation of nano-sized organic carbon (NOC) particles produced in premixed laminar ethylene flames. We analyzed the chemical transformation of NOC when the combustible/oxidant ratio (C/O) passed from lean to slightly sooting conditions. We also demonstrate the increase of the aromatic character for samples under thermal treatment. The analysis of the infrared spectra clearly shows the persistence of this material after soot inception. PACS 33.20.Ea; 82.33.Vx  相似文献   

13.
An advanced fixed sectional aerosol dynamics model describing the evolution of soot particles under simultaneous nucleation, coagulation, surface growth and oxidation processes is successfully implemented to model soot formation in a two-dimensional laminar axisymmetric coflow methane/air diffusion flame. This fixed sectional model takes into account soot aggregate formation and is able to provide soot aggregate and primary particle size distributions. Soot nucleation, surface growth and oxidation steps are based on the model of Fairweather et al. Soot equations are solved simultaneously to ensure convergence. The numerically calculated flame temperature, species concentrations and soot volume fraction are in good agreement with the experimental data in the literature. The structures of soot aggregates are determined by the nucleation, coagulation, surface growth and oxidation processes. The result of the soot aggregate size distribution function shows that the aggregate number density is dominated by small aggregates while the aggregate mass density is generally dominated by aggregates of intermediate size. Parallel computation with the domain decomposition method is employed to speed up the calculation. Three different domain decomposition schemes are discussed and compared. Using 12 processors, a speed-up of almost 10 is achieved which makes it feasible to model soot formation in laminar coflow diffusion flames with detailed chemistry and detailed aerosol dynamics.  相似文献   

14.
杨权  马立  杨斌  丁汇洋  陈涛  杨湛  孙立宁  福田敏男 《物理学报》2018,67(13):136801-136801
碳纳米管场效应管是未来纳米器件的发展方向,而制造纳米器件的前提是拾取碳纳米管,基于扫描电子显微镜(SEM)的微纳机器人操作系统能够实现碳纳米管拾取操作.本文建立拾取操作中碳纳米管与原子力显微镜(AFM)探针间范德瓦耳斯力力学模型,不同接触状态下范德瓦耳斯力越大越有利于拾取碳纳米管.在SEM视觉反馈图像中建立相对坐标系,首先提出倾角变值方法检测碳纳米管与AFM探针的接触状态,然后运用动态差值方法识别碳纳米管与AFM探针空间位姿并校正碳纳米管位姿,最后自下而上拾取碳纳米管.实验结果表明:拟合直线倾角变值较大时碳纳米管与AFM探针发生接触,动态差值变化为零时碳纳米管与AFM探针为空间线接触,在完全线接触模型下选择合适的接触角度、接触长度和拾取速度能够成功拾取碳纳米管.  相似文献   

15.
Laser-induced incandescence has been rapidly developed into a powerful diagnostic technique for measurements of soot in many applications. The incandescence intensity generated by laser-heated soot particles at the measurement location suffers the signal trapping effect caused by absorption and scattering by soot particles present between the measurement location and the detector. The signal trapping effect was numerically investigated in soot measurements using both a 2D LII setup and the corresponding point LII setup at detection wavelengths of 400 and 780 nm in a laminar coflow ethylene/air flame. The radiative properties of aggregated soot particles were calculated using the Rayleigh–Debye–Gans polydisperse fractal aggregate theory. The radiative transfer equation in emitting, absorbing, and scattering media was solved using the discrete-ordinates method. The radiation intensity along an arbitrary direction was obtained using the infinitely small weight technique. The contribution of scattering to signal trapping was found to be negligible in atmospheric laminar diffusion flames. When uncorrected LII intensities are used to determine soot particle temperature and the soot volume fraction, the errors are smaller in 2D LII setup where soot particles are excited by a laser sheet. The simple Beer–Lambert exponential attenuation relationship holds in LII applications to axisymmetric flames as long as the effective extinction coefficient is adequately defined.  相似文献   

16.
The nucleation and growth of three-dimensional superlattices of gold nanoparticles has been followed directly in situ by means of small angle x-ray scattering. These assemblies spontaneously form in a dilute solution providing the particles are large enough to generate a van der Waals driven attraction sufficient to counterbalance the thermal energy. The superlattices nucleate very soon after the birth of the individual particles and their growth kinetics is slower than predicted by a mechanism of simple diffusion of the nanoparticles towards the superlattices. The superlattices are first limited in size (170 nm in diameter) and have a globular shape with a low polydispersity. They present a fcc inner structure with nanoparticles being separated by a capping agent bilayer yielding a low gold internal volume fraction (phi SL = 0.33). In a second stage, these superlattices coalesce with time.  相似文献   

17.
The processes by which carbonaceous nanoparticles are produced from combustion of liquid and gaseous fuels are reviewed. The focus of the paper is on the formation and properties of nanoparticles in laboratory laminar, premixed and diffusion flames and on the most popular methods of sampling and detection of these particles. Particle chemical nature is analyzed from data obtained by several measurement techniques. Measurements characterizing nanoparticles in the exhausts of practical combustion systems such as engines and commercial burners are also reported. Two classes of carbonaceous material are mainly formed in combustion: nanoparticles with sizes in the range 1-5 nm, and soot particles, with sizes from 10 to 100 nm. Nanoparticles show unique chemical composition and morphology; they maintain molecular characteristics in terms of chemical reactivity, but at the same time exhibit transport and surface related phenomena typical of particles. The emission of these particles contributes to atmospheric pollution and constitutes a serious health concern. A simplified modeling analysis is used to show how the growth of aromatics and the chemical nature of the particles depend on temperature and radical concentration distributions encountered in flames.  相似文献   

18.
We have analyzed the possibility of using noncontact scanning force microscopy (NCAFM) to detect variations in surface composition, i.e., to detect a ‘spectroscopic image' of the sample. This ability stems from the fact that the long-range forces, acting between the AFM tip and sample, depend on the composition of the AFM tip and sample. The long-range force can be magnetic, electrostatic, or van der Waals forces. Detection of the first two forces is presently used in scanning force microscopy technique, but van der Waals forces have not been used. We demonstrate that the recovery of spectroscopic image has a unique solution. Furthermore, the spectroscopic resolution can be as good as lateral one.  相似文献   

19.
考虑磁性颗粒受到的各种内力与外力包括重力、布朗力、van der、Waaks力、磁偶极-偶极作用力以及外磁场作用力,建立了描述磁流体结构的两相格子-Boltzmann三维模型,对外加梯度磁场条件下磁流体的介观结构进行了模拟.模拟结果表明:外加梯度磁场时磁流体粒子沿梯度方向聚集并出现分层现象,且随时间推移和外加磁场增大,分层现象越来越明显.  相似文献   

20.
A new LES model for subfilter soot-turbulence interactions is developed based on an a priori analysis using large-scale DNS data of temporally evolving non premixed n-heptane jet flames at a jet Reynolds number of 15,000. In this work, soot formation is modeled in LES by solving explicit transport equations for soot moments, and the unclosed filtered soot moment source terms are closed by a presumed PDF approach. Due to the strong intermittency of soot fields, a previous modeling approach assumes the presumed PDF to be bimodal accounting for sooting and non-sooting subfilter regions but neglects any sub-structure of the soot distribution. In this work, the modeling framework is improved by a new presumed PDF model that explicitly accounts for the sub-structure of the sooting mode, which is modeled by a log-normal distribution. The previous and new models are assessed by means of their prediction of the filtered source terms and the filtered intermittency, and the log-normal distribution is found to significantly reduce modeling errors, in particular, for the coagulation source term. Introducing a log-normal distribution for the PDF of the sooting mode involves a large amount of additional model parameters, such as the width of the distribution and correlation coefficients among different soot moments, so model assumptions to reduce the number of model parameters are discussed by means of the DNS data. The conclusions are found to be robust with respect to a variation in the global Damköhler number in the DNS datasets. The final model formulation only requires solving two additional transport equations in LES compared to previous models, while significantly improved model predictions are obtained for the coagulation source term which is import for predicting the number of soot particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号