首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
基于混沌粒子群算法的Tikhonov正则化参数选取   总被引:2,自引:0,他引:2  
余瑞艳 《数学研究》2011,44(1):101-106
Tikhonov正则化方法是求解不适定问题最为有效的方法之一,而正则化参数的最优选取是其关键.本文将混沌粒子群优化算法与Tikhonov正则化方法相结合,基于Morozov偏差原理设计粒子群的适应度函数,利用混沌粒子群优化算法的优点,为正则化参数的选取提供了一条有效的途径.数值实验结果表明,本文方法能有效地处理不适定问题,是一种实用有效的方法.  相似文献   

2.
马玉敏  蔡邢菊 《计算数学》2022,44(2):272-288
增广拉格朗日方法是求解带线性约束的凸优化问题的有效算法.线性化增广拉格朗日方法通过线性化增广拉格朗日函数的二次罚项并加上一个临近正则项,使得子问题容易求解,其中正则项系数的恰当选取对算法的收敛性和收敛速度至关重要.较大的系数可保证算法收敛性,但容易导致小步长.较小的系数允许迭代步长增大,但容易导致算法不收敛.本文考虑求解带线性等式或不等式约束的凸优化问题.我们利用自适应技术设计了一类不定线性化增广拉格朗日方法,即利用当前迭代点的信息自适应选取合适的正则项系数,在保证收敛性的前提下尽量使得子问题步长选择范围更大,从而提高算法收敛速度.我们从理论上证明了算法的全局收敛性,并利用数值实验说明了算法的有效性.  相似文献   

3.
We study the convergence rate of the proximal-gradient homotopy algorithm applied to norm-regularized linear least squares problems, for a general class of norms. The homotopy algorithm reduces the regularization parameter in a series of steps, and uses a proximal-gradient algorithm to solve the problem at each step. Proximal-gradient algorithm has a linear rate of convergence given that the objective function is strongly convex, and the gradient of the smooth component of the objective function is Lipschitz continuous. In many applications, the objective function in this type of problem is not strongly convex, especially when the problem is high-dimensional and regularizers are chosen that induce sparsity or low-dimensionality. We show that if the linear sampling matrix satisfies certain assumptions and the regularizing norm is decomposable, proximal-gradient homotopy algorithm converges with a linear rate even though the objective function is not strongly convex. Our result generalizes results on the linear convergence of homotopy algorithm for \(\ell _1\)-regularized least squares problems. Numerical experiments are presented that support the theoretical convergence rate analysis.  相似文献   

4.
通过分析Bai(Bai Z Z.Block preconditioners for elliptic PDE-constrained optimization problems.Computing,2011,91:379-395)给出的离散分布控制问题的块反对角预处理线性系统,提出了该问题的一个等价线性系统,并且运用带有预处理子的最小残量方法对该系统进行求解.理论分析和数值实验结果表明,所提出的预处理最小残量方法对于求解该类椭圆型偏微分方程约束最优分布控制问题非常有效,尤其当正则参数适当小的时候.  相似文献   

5.
陈仲英  宋丽红 《东北数学》2005,21(2):131-134
Many industrial and engineering applications require numerically solving ill-posed problems. Regularization methods are employed to find approximate solutions of these problems. The choice of regularization parameters by numerical algorithms is one of the most important issues for the success of regularization methods. When we use some discrepancy principles to determine the regularization parameter,  相似文献   

6.
将结构动力学反问题视为拟乘法逆特征值问题,利用求解非线性方程组的同伦方法来解决结构动力学逆特征值问题,这种方法由于沿同伦路径求解,对初值的选取没有本质的要求,算例说明了这种方法是可行的.  相似文献   

7.
This paper proposes a new image restoration technique, in which the resulting regularized image approximates the optimal solution steadily. The affect of the regular-ization operator and parameter on the lower band and upper band energy of the residue of the regularized image is theoretically analyzed by employing wavelet transform. This paper shows that regularization operator should generally be lowstop and highpass. So this paper chooses a lowstop and highpass operator as regularization operator, and construct an optimization model which minimizes the mean squares residue of regularized solution to determine regularization parameter. Although the model is random, on the condition of this paper, it can be solved and yields regularization parameter and regularized solu-tion. Otherwise, the technique has a mechanism to predict noise energy. So, without noisei nformation, it can also work and yield good restoration results.  相似文献   

8.
《Optimization》2012,61(12):2297-2316
ABSTRACT

On the basis of Robinson's normal equation and smoothing projection operator, a homotopy method for solving mathematical programs with box-constrained variational inequalities (MPBVI) is presented. In which, the Chen–Harker–Kanzow–Smale smooth function is used to transform MPBVI into a smooth optimization problem. Under some mild assumptions, the existence and global convergence of a smooth path from almost any initial point to the GKKT point of the approximate problems is proven. And, the convergence of the GKKT point to a strong C-stationary point of the original problems is proved. Finally, some numerical results are given to show the effectiveness and feasibility of the homotopy method.  相似文献   

9.
We describe regularizing iterative methods for the solution of large ill-conditioned linear systems of equations that arise from the discretization of linear ill-posed problems. The regularization is specified by a filter function of Gaussian type. A parameter determines the amount of regularization applied. The iterative methods are based on a truncated Lanczos decomposition and the filter function is approximated by a linear combination of Lanczos polynomials. A suitable value of the regularization parameter is determined by an L-curve criterion. Computed examples that illustrate the performance of the methods are presented.  相似文献   

10.
An analytic technique, the homotopy analysis method (HAM), is applied to obtain the soliton solution of the Fitzhugh–Nagumo equation. The homotopy analysis method (HAM) is one of the most effective method to obtain the exact solution and provides us with a new way to obtain series solutions of such problems. HAM contains the auxiliary parameter ?, which provides us with a simple way to adjust and control the convergence region of series solution.  相似文献   

11.
A two-step iterative process for the numerical solution of nonlinear problems is suggested. In order to avoid the ill-posed inversion of the Fréchet derivative operator, some regularization parameter is introduced. A convergence theorem is proved. The proposed method is illustrated by a numerical example in which a nonlinear inverse problem of gravimetry is considered. Based on the results of the numerical experiments practical recommendations for the choice of the regularization parameter are given. Some other iterative schemes are considered.  相似文献   

12.
The numerical simulation of the mechanical behavior of industrial materials is widely used for viability verification, improvement and optimization of designs. Elastoplastic models have been used to forecast the mechanical behavior of different materials. The numerical solution of most elastoplastic models comes across problems of ill-condition matrices. A complete representation of the nonlinear behavior of such structures involves the nonlinear equilibrium path of the body and handling of singular (limit) points and/or bifurcation points. Several techniques to solve numerical problems associated to these points have been disposed in the specialized literature. Two examples are the load-controlled Newton–Raphson method and displacement controlled techniques. However, most of these methods fail due to convergence problems (ill-conditioning) in the neighborhood of limit points, specially when the structure presents snap-through or snap-back equilibrium paths. This study presents the main ideas and formalities of the Tikhonov regularization method and shows how this method can be used in the analysis of dynamic elastoplasticity problems. The study presents a rigorous mathematical demonstration of existence and uniqueness of the solution of well-posed dynamic elastoplasticity problems. The numerical solution of dynamic elastoplasticity problems using Tikhonov regularization is presented in this paper. The Galerkin method is used in this formulation. Effectiveness of Tikhonov’s approach in the regularization of the solution of elastoplasticity problems is demonstrated by means of some simple numerical examples.  相似文献   

13.
An operator regularization method is considered for ill-posed vector optimization of weakly lower semicontinuous essentially convex functionals on reflexive Banach spaces. The regularization parameter is chosen by a modified generalized discrepancy principle. A condition for the estimation of the convergence rate of regularized solutions is derived. This article was submitted by the author in English.  相似文献   

14.
In this article, the approximate solution of nonlinear heat diffusion and heat transfer equation are developed via homotopy analysis method (HAM). This method is a strong and easy‐to‐use analytic tool for investigating nonlinear problems, which does not need small parameters. HAM contains the auxiliary parameter ?, which provides us with a simple way to adjust and control the convergence region of solution series. By suitable choice of the auxiliary parameter ?, we can obtain reasonable solutions for large modulus. In this study, we compare HAM results, with those of homotopy perturbation method and the exact solutions. The first differential equation to be solved is a straight fin with a temperature‐dependent thermal conductivity and the second one is the two‐ and three‐dimensional unsteady diffusion problems. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

15.
Probability-one homotopy algorithms are a class of methods for solving nonlinear systems of equations that, under mild assumptions, are globally convergent for a wide range of problems in science and engineering. Convergence theory, robust numerical algorithms, and production quality mathematical software exist for general nonlinear systems of equations, and special cases such as Brouwer fixed point problems, polynomial systems, and nonlinear constrained optimization. Using a sample of challenging scientific problems as motivation, some pertinent homotopy theory and algorithms are presented. The problems considered are analog circuit simulation (for nonlinear systems), reconfigurable space trusses (for polynomial systems), and fuel-optimal orbital rendezvous (for nonlinear constrained optimization). The mathematical software packages HOMPACK90 and POLSYS_PLP are also briefly described.  相似文献   

16.
Abstract

We propose a new way to iteratively solve large scale ill-posed problems by exploiting the relation between Tikhonov regularization and multiobjective optimization to obtain, iteratively, approximations to the Tikhonov L-curve and its corner. Monitoring the change of the approximate L-curves allows us to adjust the regularization parameter adaptively during a preconditioned conjugate gradient iteration, so that the desired solution can be reconstructed with a low number of iterations. We apply the technique to an idealized image reconstruction problem in positron emission tomography.  相似文献   

17.
考虑终值数据条件下一维空间-时间分数阶变系数对流扩散方程中同时确定空间微分阶数与时间微分阶数的反问题.基于对空间-时间分数阶导数的离散,给出求解正问题的一个隐式差分格式,通过对系数矩阵谱半径的估计,证明差分格式的无条件稳定性和收敛性.联合最佳摄动量算法和同伦方法引入同伦正则化算法,应用一种单调下降的Sigmoid型传输函数作为同伦参数,对所提微分阶数反问题进行精确数据与扰动数据情形下的数值反演.结果表明同伦正则化算法对于空间-时问分数阶反常扩散的参数反演问题是有效的.  相似文献   

18.
This paper is concerned with the inverse problem of reconstructing an infinite, locally rough interface from the scattered field measured on line segments above and below the interface in two dimensions. We extend the Kirsch-Kress method originally developed for inverse obstacle scattering problems to the above inverse transmission problem with unbounded interfaces. To this end, we reformulate our inverse problem as a nonlinear optimization problem with a Tikhonov regularization term. We prove the convergence of the optimization problem when the regularization parameter tends to zero. Finally, numerical experiments are carried out to show the validity of the inversion algorithm.  相似文献   

19.
Generalized cross validation is a popular approach to determining the regularization parameter in Tikhonov regularization. The regularization parameter is chosen by minimizing an expression, which is easy to evaluate for small‐scale problems, but prohibitively expensive to compute for large‐scale ones. This paper describes a novel method, based on Gauss‐type quadrature, for determining upper and lower bounds for the desired expression. These bounds are used to determine the regularization parameter for large‐scale problems. Computed examples illustrate the performance of the proposed method and demonstrate its competitiveness. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Abstract

We provide a modified augmented Lagrange method coupled with a Tikhonov regularization for solving ill-posed state constrained elliptic optimal control problems with sparse controls. We consider a linear quadratic optimal control problem without any additional L2 regularization terms. The sparsity is guaranteed by an additional L1 term. Here, the modification of the classical augmented Lagrange method guarantees us uniform boundedness of the multiplier that corresponds to the state constraints. We present a coupling between the regularization parameter introduced by the Tikhonov regularization and the penalty parameter from the augmented Lagrange method, which allows us to prove strong convergence of the controls and their corresponding states. Moreover, convergence results proving the weak convergence of the adjoint state and weak*-convergence of the multiplier are provided. Finally, we demonstrate our method in several numerical examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号