首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
基于碳纸电极电化学快速合成聚苯胺纳米纤维   总被引:2,自引:0,他引:2  
利用碳纸电极,采用循环伏安法、恒电流法和恒电位法等电化学聚合法快速合成了高氯酸掺杂聚苯胺纳米纤维.利用电子显微镜、红外光谱和四探针测定仪等对聚苯胺的微观形貌结构、掺杂度和电导率进行了研究.用循环伏安法对聚苯胺的电化学特征进行了分析.研究发现,3种方法合成的聚苯胺均为纳米纤维状结构,长度达3μm,直径为50~150 nm.其中,循环伏安法合成的聚苯胺纳米纤维的均一性和电导率均优于其它2种方法,其电导率高达5.97 S/cm.另外,聚苯胺合成速率顺序为恒电流法>循环伏安法>恒电位法,且恒电流法合成的聚苯胺纳米纤维电极材料的放电比容量最大(578 F/g),电容性能最好.  相似文献   

2.
采用恒电位电聚合法制备了樟脑磺酸(CSA)掺杂的旋光异构性聚苯胺(PANI)纳米纤维. 用扫描电子显微镜(SEM)、 透射电子显微镜(TEM)、 紫外-可见吸收光谱(UV-Vis)和圆二色光谱(CD)对PANI纳米纤维的形貌和光学性质进行表征, 结合电聚合溶液胶束平均粒径和ζ电位的测定, 研究了具有旋光异构性PANI纳米纤维的形成机理和具有增强旋光异构性的原因. 所制备的PANI纳米纤维具有无双螺旋结构, 其形貌不随着苯胺浓度的改变而变化. 不同手性樟脑磺酸掺杂制备的PANI纳米纤维具有镜像对称的旋光异构性, 且具有较高的椭圆偏振率. 这种手性PANI纳米纤维的颜色和旋光性均可通过化学掺杂/去掺杂或电化学掺杂改变氧化还原态而呈现可逆变化.  相似文献   

3.
以手性试剂D-樟脑磺酸(D-CSA)和L-樟脑磺酸(L-CSA)为掺杂剂和构象诱导剂,采用界面聚合法合成了螺旋形聚苯胺纳米纤维。通过FESEM、TEM、FTIR和UV-Vis吸收光谱等测试技术对螺旋形聚苯胺纳米纤维结构进行了表征。结果表明,所得聚苯胺纤维具有螺旋形构象,形貌均一,平均直径约为50nm,长度为300~600nm,具有较高的长径比(6:1~12:1)。在水溶液中,聚苯胺纳米纤维以伸展的螺旋形分子链构象存在,调节溶液的pH值,螺旋形聚苯胺纳米纤维表现出可逆的掺杂和脱掺杂性质。循环伏安(CV)测试表明,螺旋形聚苯胺纳米纤维在0.5mol/LHCl溶液中表现出良好的电化学活性。  相似文献   

4.
采用经典的固相合成法制备了一对烷基取代丙氨酸四肽衍生物对映体,研究了其在不同溶剂中的成胶行为,并以其在甲醇中形成的超分子自组装体为模板,利用溶胶-凝胶法制备了单手螺旋3-氨基苯酚甲醛树脂纳米纤维.利用扫描电子显微镜和透射电子显微镜观察超分子自组装体及3-氨基苯酚甲醛树脂的螺旋形貌,并利用圆二色谱研究其光学性质.研究发现,3-氨基苯酚甲醛树脂纳米纤维既具有纳米尺度的手性,又具有分子尺度的手性.手性从小分子形成的自组装体传递到高分子树脂中.  相似文献   

5.
苯胺乳液聚合条件的研究   总被引:13,自引:0,他引:13  
以(NH4)2S2O8为氧化剂、在非极性溶剂-功能质子酸-水三相体系中,采用乳液聚合方法合成聚苯胺乳液和粉末。对乳液聚合与化学氧化溶液聚合合成的聚苯胺性能进行了比较,研究了掺杂酸、氧化剂、反应时间、温度和水相浓度等聚合条件对聚苯胺导电性、溶解性、乳液粘度等性能的影响。结果表明,乳液聚合产率大于80%,聚苯胺电导率大于1S/cm,在有机溶剂中的溶解性与用化学氧化合成的聚苯胺相比有明显提高。  相似文献   

6.
氯化铁氧化掺杂的聚苯胺纳米纤维团簇   总被引:3,自引:0,他引:3  
没有外加质子酸的条件下,以氯化铁为氧化剂和掺杂剂,在界面体系中由苯胺(An)采用“无模板”的方法成功地制备了电导率为10-2~10-1S/cm的聚苯胺纳米纤维(d=20~30nm).实验证明FeCl3同时起到氧化剂和掺杂剂的双重作用,从而进一步简化了导电聚苯胺纳米纤维的合成条件.与使用过硫酸铵为氧化剂的传统聚合方法相比,FeCl3较小的氧化/还原电位使产物具有较小的直径和较高的结晶性.同时发现聚苯胺的形貌和电导率均与[FeCl3]/[An]的比例有关.FTIR,UV-Vis,XRD结构表征证实所得的聚苯胺纳米纤维为掺杂态.  相似文献   

7.
张圆  盛扬  张嵘  孙一新 《化学通报》2024,87(3):331-337
手性超分子凝胶材料在传感器、人工触角、药物缓释、细胞培养等领域表现出潜在的应用前景。本文合成了一种新型的含偶氮苯官能团的D/L苯丙氨酸手性凝胶因子ALP和ADP,具有对称且完全相反的手性信号。该凝胶因子在多种有机溶剂和水混合溶剂中均可形成稳定的淡黄色凝胶,其中在DMSO和水混合溶剂中表现出最优的成凝胶性能,临界成胶浓度可达2.0mg/mL,表明该手性凝胶因子具有良好的成凝胶性能。手性凝胶可对热、光、pH等外界环境刺激产生响应,并伴有宏观上的凝胶-溶胶相互转变。手性凝胶因子自组装形成了不同螺旋纳米纤维结构,并发现L型手性纳米纤维相对于D型手性纳米纤维对细胞具有更好的粘附与增殖效果。  相似文献   

8.
以氯金酸(HAuCl4)为氧化剂,在两种不同无机酸(HCl和H2SO4)的掺杂下,通过调节反应体系中混合溶剂的醇水比例,用一步氧化苯胺聚合法成功制备了不同形貌的纳米聚苯胺及聚苯胺/金复合材料.通过扫描电子显微镜(SEM)、紫外可见吸收光谱(UV-Vis)和红外光谱(FT-IR)对产物的形貌和结构进行了表征.在此基础上,进一步讨论了聚苯胺/金复合材料可能的形成机理.  相似文献   

9.
用新的非水溶剂体系制备含磷纤维素衍生物尤田耙,张兴元,沈晓煊,郭荷民,胡小铭(中国科学技术大学化学系合肥230026)关键词非水溶剂,含磷纤维素衍生物,合成近年合成的一些纤维素衍生物被用作不对称合成的手性催化剂配体[1]、拆分光学异构体的色谱手性固定...  相似文献   

10.
超疏水导电聚苯胺的界面聚合   总被引:1,自引:0,他引:1  
采用界面聚合和无模板法相结合的方法, 以具有疏水链的全氟癸二酸(PFSEA)为掺杂剂, 通过调节苯胺单体和FeCl3氧化剂的浓度实现了聚苯胺三维微/纳米结构形貌和尺寸的可控制备. 扫描电子显微镜测量结果显示, 聚苯胺是由一维纳米纤维自组装形成的三维微球结构; 红外吸收光谱和紫外-可见吸收光谱结果表明, 聚苯胺微球为掺杂态. 室温下, 该微/纳米结构聚苯胺微球的电导率为 9.6×10-3 S/cm, 表面水接触角为161.4°, 表现出半导体特性和超疏水性.  相似文献   

11.
The solid‐state three‐dimensional ordering of polyaniline–dopant complexes was investigated with four structurally different sulfonic acid dopants. The doped materials were produced in three different ways: polyaniline emeraldine base doped with sulfonic acid (aqueous route), in situ polymerization at the organic–water solvent interface (interfacial route), and in situ polymerization in organic and aqueous solvent mixtures (bilayer route). p‐Toluenesulfonic acid (PTSA), 5‐sulfosalicilic acid (SSA), camphorsulfonic acid (CSA), and dodecylbenzene sulfonic acid (DBSA) were employed as dopants. The conductivity of the aqueous‐route samples showed 10 and 100 times higher conductivity than the interfacial and bilayer routes, respectively. WXRD studies suggested that the crystallinity of the doped samples was dependent on both the structure of the dopants and the polymerization techniques. DBSA increases the polyaniline interplanar distance and produced highly crystalline materials via the aqueous and bilayer routes but failed with the interfacial route because of poor solubility in water. CSA, PTSA, and SSA produced highly crystalline samples by the interfacial route but failed with the aqueous (except for CSA) and bilayer routes. SEM analysis revealed that the doped materials of the interfacial route had excellent continuous morphology and uniform submicrometer‐size particle distributions in comparison with those of the aqueous and bilayer routes. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1321–1331, 2005  相似文献   

12.
In this study, nanostructure polyaniline was prepared from aniline monomer via chemical oxidative polymerization in the presence of ammonium persulfate as an oxidizing agent. Interfacial, emulsion, rapid mixing and ultrasonic techniques are used for polymer synthesis. In the interfacial method, chloroform, n-hexane, hexanole and toluene were used as organic solvents and sulfuric acid, methane sulfonic acid and acetic acid were employed as electrolyte solutions. In the emulsion polymerization, dodecyl benzene sulfonic acid and aqueous solution of hydrochloric acid were used as emulsion agent and electrolyte solution respectively. In rapid mixing reaction and ultrasonic method, hydrochloric acid and salicylic acid were used as dopants. The structure, conductivity, morphology and particle size distribution of prepared polymers were investigated after purification and drying by FTIR spectroscopy, scanning electron microscopy and electrical conductivity measurements.  相似文献   

13.
We report that nano‐emulsions can be creatively used as a morphology selective synthesis method to prepare not only nano‐grains but also nano‐fibers with high selectivity. Synthesis of the two different morphological materials was demonstrated using polyaniline synthesis as a model case. Polyaniline nano‐grains were synthesized from aniline molecules in nano‐size aqueous droplets as polymerization sites whose droplets were generated by inverse water‐in‐oil nano‐emulsion use, and polyaniline nano‐fibers were synthesized from aniline in aqueous nano‐dimensional channels as polymerization sites whose channels were generated by direct oil‐in‐water nano‐emulsion use containing high population of oil droplets. Using the approaches, we successfully synthesized nano‐fibers of 60 nm diameter with 0.5 µm length and also nano‐grains having diameter of 60–80 nm. The two different polymerization sites of nano‐scale dimension were made by changing the ratio among surfactant, aqueous aniline/HCl solution, and oil, i.e. organic solvent. We found the nano‐fibers synthesized from the channels formed by the direct oil‐in‐water nano‐emulsion have higher bulk electrical conductivity than the nano‐grains which were synthesized from the droplets formed by the inverse water‐in‐oil emulsion. We also found that the emulsion use allows us to use a room temperature synthesis unlike conventional synthesis methods which require to use ice bath temperature. Physical properties of both nano‐fibers and nano‐grains synthesized were characterized by Fourier transform infrared (FTIR), UV–Vis spectra, scanning electron microscopy (SEM), and four probes conductivity measurement. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Herein we focused on using a novel separation technology, solvent sublation, for the enantioseparation of α-cyclohexylmandelic acid (CHMA). The experiment was carried out in a conventional bubble column using d-iso-butyl tartrate (d-IBTA) and sodium dodecyl sulfate (SDS) as a chiral selector and surfactant, respectively (Fig. 7). Several important parameters influencing the separation performance, such as the type of organic phase, the pH in the aqueous phase, and the concentrations of CHMA, d-IBTA, and SDS were investigated. Under the optimal operating conditions, the enantiomeric excess and separation factor were 54.85% and 4.5, respectively. The yields of d-enantiomer and l-enantiomer were 82.20% and 38.94%, respectively. Finally, the thermodynamic properties of the separation were investigated, which indicated an enthalpy-controlled process. This technique is an efficient chiral separation method, with many advantages, such as low amounts of organic solvent and chiral selector required and easier realization of the multi-stage operation.  相似文献   

15.
The electrorheological (ER) properties of dodecylbenzenesulfonic acid (DBSA) doped polyaniline suspensions in silicone oil were investigated. In contrast to chemically polymerized polyaniline in an acidic aqueous medium by oxidation polymerization, we adopted an emulsion polymerization technique in which aniline is polymerized in an emulsion of water and a nonpolar (or weakly polar) organic solvent. The effects of electric field strength and particle concentration on the ER properties of DBSA-doped polyaniline suspensions in silicone oil were then examined. Rheological measurements were also carried out using a rotational rheometer with a high-voltage generator in both controlled shear rate and shear stress modes, and the results showed that the ER properties were enhanced by increasing the particle concentration and electric field. Received: 23 August 1999 Accepted: 6 April 2000  相似文献   

16.
Preparation of PLGA microspheres with different porous morphologies   总被引:1,自引:0,他引:1  
甘志华  王峰 《高分子科学》2015,33(1):128-136
Poly(D,L-lactide-co-glycolide)(PLGA) microspheres were prepared by emulsion solvent evaporation method. The influences of inner aqueous phase, organic solvent, PLGA concentration on the morphology of microspheres were studied. The results showed that addition of porogen or surfactants to the inner aqueous phase, types of organic solvents and polymer concentration affected greatly the microsphere morphology. When dichloromethane was adopted as organic solvent, microspheres with porous structure were produced. When ethyl acetate served as organic solvent, two different morphologies were obtained. One was hollow microspheres with thin porous shell under a lower PLGA concentration, another was erythrocyte-like microspheres under a higher PLGA concentration. Three types of microspheres including porous, hollow core with thin porous shell(denoted by hollow in brief) and solid structures were finally selected for in vitro drug release tests. Bovine serum albumin(BSA) was chosen as model drug and encapsulated within the microspheres. The BSA encapsulation efficiency of porous, hollow and solid microspheres was respectively 90.4%, 79.8% and 0. And the ultimate accumulative release was respectively 74.5%, 58.9% and 0. The release rate of porous microspheres was much slower than that of hollow microspheres. The experiment results indicated that microspheres with different porous structures showed great potentials in controlling drug release behavior.  相似文献   

17.
3‐Phenyllactic acid is an antimicrobial compound with broad‐spectrum activity against various bacteria and fungus. The observed difference in pharmacological activity between optical isomeric 3‐phenyllactic acid necessitates a method for enantioseparation. Chiral ligand exchange countercurrent chromatography was investigated for the enantioseparation of 3‐phenyllactic acid with a synthesized chiral ligand. A two‐phase solvent system was composed of n‐butanol/hexane/water (0.4:0.6:1, v/v/v) to which Nn‐dodecyl‐l ‐hydroxyproline was added to the organic phase as chiral ligand and cupric acetate was added in the aqueous phase as a transitional metal ion. The influence factors were optimized by enantioselective liquid–liquid extraction. Baseline enantioseparation of racemic 3‐phenyllactic acid by analytical high‐speed countercurrent chromatography was achieved. The optical purities of enantiomeric 3‐phenyllactic acid reached 99.0%, as determined by chiral high‐performance liquid chromatography.  相似文献   

18.
Lee J  Kim KR  Won S  Kim JH  Goto J 《The Analyst》2001,126(12):2128-2133
The enantioseparation of 30 racemic amino acids in a single analysis is described for the determination of their absolute configurations. Two-phase extractive ethoxycarbonyl (EOC) reaction with ethyl chloroformate present in the dichloromethane phase was performed to recover amino acids from alkaline aqueous solutions. The resulting N(O,S)-EOC amino acids extracted into an organic solvent after acidification were reacted with a chiral alcohol such as (S)-(+)-3-methylbutan-2-ol, (S)-(+)-butan-2-ol and (S)-(+)-octan-2-ol for gas chromatographic analysis on achiral dual-capillary DB-5 and DB-17 columns of different polarities. Among the chiral reagents examined, (S)-(+)-3-methylbutan-2-ol provided the best diastereomeric structures in resolving all the racemic amino acids into their enantiomeric pairs with high resolution factors (1.2-8.0). Moreover, the temperature-programmed retention index (I) values measured on the two columns were characteristic of each enantiomer. Hence simple I matching with the reference values was useful in cross-checking for chemical identification and also chiral discrimination. When the present method was applied to a fermented dairy product (Yakult), D-alanine, D-aspartic acid, D-glutamic acid and D-proline were positively detected along with their respective L-forms in addition to glycine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号