首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Haron MJ  Wan Md ZW  Desa MZ  Kassim A 《Talanta》1994,41(5):805-807
Poly(hydroxamic acid) chelating ion-exchange resin was prepared from crosslinked poly(methacrylate) beads. The starting polymer was prepared by a suspension polymerization of methacrylate and divinyl benzene. Conversion of the ester groups into the hydroxamic acid was carried out by treatment with hydroxylamine in an alkaline solution. Hydroxamic acid capacity of the product was 2.71 mmol/g. The resin exhibited high affinity towards Fe(III) and Pb ions and its capacities for Fe(III), Pb, Cu, Ni and Co ions were pH dependent. The ability of the resin to carry out the separation of Fe(III)CuCo/Ni and PbNi ions is also reported.  相似文献   

2.
The binding of a cationic surfactant, dodecylpyridinium (C12Py) chloride, with a low-charge-density poly (methacrylic acid) (PMA) was investigated in buffer solutions under the condition of constant pH. The binding isotherms with PMA consisted of two and three steps at a pH lower and higher than 3.2, respectively. Bindings in the first step were independent of pH and this step was considered to correspond to the solubilization of the hydrocarbon chains of C12Py into the nonpolar region of the compact form of PMA. This is the indication of the compact form from the binding isotherm. At pH higher than 3.2, the second step was discriminated and it depended on the pH. In the third step, a sharp rise in the degree of binding (β) was observed accompanying the solubilization of the precipitates of the PMA–C12Py complex. The binding with poly(acrylic acid) (PAA) and PMA in conventional unbuffered NaCl solutions was also examined and the pH profile of the solution during the binding process was determined. In the case of unbuffered NaCl solutions, the binding with PAA took place cooperatively at the critical association concentration (cac). The binding isotherm consisted of two steps and the pH decreased with the increase in β. The binding isotherm of PMA, on the other hand, consisted of three steps: the pH decreased slightly in the first step and considerably in the second step with the increase in β but it increased with β in the third step, exhibiting a pH minimum around 3.2. The binding in the first step coincided with that obtained in the buffered solutions. Linear relationships between β and the pH were found for both polymers. In the case of PMA, no cac was observed in both buffered and unbuffered NaCl solutions. Received: 24 January 2001 Accepted: 23 May 2001  相似文献   

3.
Interpolymer complexation of poly(acrylic acid) with poly(acrylamide) and hydrolysed poly(acrylamide) was studied by fluorescence spectroscopy and viscometry in dilute aqueous solutions. Changes in chain conformation and flexibility due to the interpolymer association are reflected in the intramolecular excimer fluorescence of pyrene groups covalently attached to the polymer chain. Both poly(acrylamide) and hydrolysed poly(acrylamide) form stable complexes with poly(acrylic acid) at low pH. The molecular weight of poly(acrylic acid) and solution properties such as pH and ionic strength were found to influence the stability and the structure of the complexes. In addition, the polymer solutions mixing time showed an effect on the mean stoichiometry of the complex. The intrinsic viscosity of the solutions of mixed polymers at low pH suggested a compact polymer structure for the complex.  相似文献   

4.
Poly(anhydride-ester)s and poly(anhydride-amide)s derived from both 4- and 5-aminosalicylate acids (4- and 5-ASA) were synthesized and characterized by physicochemical methods. Thermal and solubility characteristics directly correlated to the polymer backbone composition; polymers based on 5-ASA had greater solubilities in organic solvents than polymers based on 4-ASA, and the poly(anhydride-ester)s thermally decomposed at temperatures nearly 100 °C higher than the corresponding poly(anhydride-amide)s. The polymers were self-contained, controlled-release systems that combine the drug and controlled-release mechanism into the polymer backbone. The erosion and degradation characteristics of the polymers were measured in physiologically relevant media. All polymer matrices fully degraded in media buffered to pH 7.4, whereas in acidic media (pH 1.2), all polymer matrices maintained greater than 50% mass over a 90-day time period. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3667–3679, 2003  相似文献   

5.
Metal adsorbent containing hydroxamic acid groups was successfully synthesized by radiation-induced graft copolymerization of methyl acrylate (MA) onto cassava starch. The optimum conditions for grafting were studied in terms of % degree of grafting (Dg). Conversion of the ester groups present in poly(methyl acrylate)-grafted-cassava starch copolymer into hydroxamic acid was carried out by treatment with hydroxylamine (HA) in the presence of alkaline solution. The maximum percentage conversion of the ester groups of the grafted copolymer, % Dg=191 (7.63 mmol/g of MA), into the hydroxamic groups was 70% (5.35 mmol/g of MA) at the optimum condition. The adsorbent of 191%Dg had total adsorption capacities of 2.6, 1.46, 1.36, 1.15 and 1.6 mmol/g-adsorbent for Cd2+, Al3+, UO22+, V5+ and Pb2+, respectively, in the batch mode adsorption.  相似文献   

6.
A graft copolymerization was performed using free radical initiating process to prepare the poly(methyl acrylate) grafted copolymer from the tapioca cellulose. The desired material is poly(hydroxamic acid) ligand, which is synthesized from poly(methyl acrylate) grafted cellulose using hydroximation reaction. The tapioca cellulose, grafted cellulose and poly(hydroxamic acid) ligand were characterized by Infrared Spectroscopy and Field Emission Scanning Electron Microscope. The adsorption capacity with copper was found to be good, 210 mg g?1 with a faster adsorption rate (t1/2 = 10.5 min). The adsorption capacities for other heavy metal ions were also found to be strong such as Fe3+, Cr3+, Co3+ and Ni2+ were 191, 182, 202 and 173 mg g?1, respectively at pH 6. To predict the adsorption behavior, the heavy metal ions sorption onto ligand were well-fitted with the Langmuir isotherm model (R2 > 0.99), which suggest that the cellulose-based adsorbent i.e., poly(hydroxamic acid) ligand surface is homogenous and monolayer. The reusability was checked by the sorption/desorption process for six cycles and the sorption and extraction efficiency in each cycle was determined. This new adsorbent can be reused in many cycles without any significant loss in its original removal performances.  相似文献   

7.
Macrocyclic polyether or crown ether ester derivatives of acrylic and methacrylic acid were synthesized and polymerized. The cation binding properties of the polymers determined by extraction of picrate salts were similar to those obtained for poly(crown ether)s derived from styrene. In the presence of a crown-complexable cation both polymers form insoluble polysalt complexes with sodium carboxymethylcellulose, potassium poly(styrene sulfonate), and potassium polyacrylate. The extent of precipitation depends on the type and concentration of cation as well as on the ratio polyanion to poly(crown ether). The precipitate appears to have an equal number of positive and negative charges. An insoluble hydrogen-bonded complex is formed in the absence of salt when poly(vinylbenzo-18-crown-6) and poly(acrylic acid) are mixed in 0.01M HCl. Organic solutes bound to the poly(crown ether)s, which occur in an aqueous mixture of poly(vinylbenzo-18-crown-6) and picrate anions, are precipitated with the poly(crown ether) when the polysalt complex is formed.  相似文献   

8.
A group of new, water-soluble poly(ether-urethane)s, derived from poly(ethylene glycol) and the amino acid L -lysine, provide pendent carboxylic acid groups along the polymer backbone at regular intervals. The carboxylic acid groups were utilized for the attachment of acrylate and methacrylate pendent chains (hydroxyethyl acrylate, hydroxyethyl methacrylate, aminoethyl methacrylate, and aminoethyl methacrylamide), leading to functionalized polymers. The pendent chains were attached via ester and/or amide bonds having different degrees of hydrolytic stability. The attachment reactions proceeded with high yields (up to 95%). The functionalized polymers were subsequently photopolymerized (UV irradiation) to obtain crosslinked hydrogels. Crosslinked membranes with the highest degree of mechanical strength were obtained when the crosslinking reaction was performed in dioxane with benzoin methyl ether (0.1 wt %) as the initiator. the crystallinity, thermomechanical properties, and hydrolytic stability of the crosslinked membranes were studied. All membranes were transparent and highly swellable (equilibrium water content: 64–88%). The tensile strength in the swollen state ranged from 0.15 to 1.09 MPa. Under physiological conditions (phosphate buffered water, 0.1M, pH 7.4, 37°C) the hydrolytic stability of the hydrogels varied depending on the bonds used in the attachment of the acrylate pendent chains: Hydrogels with hydroxyethyl acrylate pendent chains dissolved within 30 days, while hydrogels containing aminoethyl methacrylamide pendent chains remained unchanged throughout a 30 day period. Using high molecular weight FITC-dextrans as model compounds, complete release from the swollen hydrogels required between 60 and 150 h. Overall, the evaluation of poly(ethylene glycol)-lysine derived, photocrosslinked hydrogels indicated that these materials provide a range of potentially useful properties. © 1994 John Wiley & Sons, Inc.  相似文献   

9.
Photophysical properties of the pyrene chromophore covalently bound to poly(acrylic acid) were used to investigate the interactions of a pyrene substituted poly(acrylic acid) (1) with poly(vinyl amine hydrochloride) (PVAm), poly(1-aminoacrylic acid) (PDA), and poly(1-acetylaminoacrylic acid) (PADA) in aqueous solutions. A number of photophysical parameters were obtained from fluorescence emission and excitation spectra, the deconvolution of decay curves for pyrene monomer, and excited state complex fluorescence and the quenching of pyrene monomer fluorescence by nitromethane in polymer solutions. These photophysical parameters were considered to reflect the inter- and intrapolymer interactions in solutions of 1 , PVAm, PDA, and PADA. The formation of interpolymer complexes between 1 and PVAm was noticed at low (< 4) as well as high (> 8) values, whereas PDA and 1 formed interpolymer complexes at low pH only. No interpolymer complex formation was detected in solutions of 1 and PADA under low or high pH conditions. The structures of interpolymer complexes formed between 1 and PVAm under low and high pH conditions were found to be determined by the conformation of 1 . There were significant differences in the interpolymer interactions of 1 and PDA in comparison to those of 1 and PVAm; in particular, the fluorescence from the excited state complex was enhanced in solutions of 1 and PVAm but quenched in solutions of 1 and PDA. The investigations of terpolymer solutions of 1 , PVAm, and PADA indicated that the nature of interpolymer complexes formed in terpolymer solutions was determined by Coulombic interactions of the amino and carboxylic group containing polymers.  相似文献   

10.
Complexes formed from poly(acrylic acid) and poly(2-hydroxyethyl acrylate) were studied in aqueous solutions by viscometric, turbidimetric, FTIR spectroscopic, and thermogravimetric analysis methods. The formation of interpolymer complexes stabilized by hydrogen bonds was observed. It was found that the compositions of these interpolymer complexes are strongly dependent on the concentration of polymers, the order of mixing the solutions, and the pH. It was demonstrated that the complexation ability of poly(2-hydroxyethyl acrylate) is relatively low compared to other known nonionic water-soluble polymers. However, it can be significantly increased via hydrophobic modification of the poly(acrylic acid) using cetyl pyridinium bromide.  相似文献   

11.
Ferrocene redox polymers based on the coupling of ferrocenecarboxaldehyde to both linear and branched poly(ethylenimine) (PEI) have been prepared to investigate the effects of pH, electrolyte, and cross-linking on electron charge transport and film swelling. The redox behavior of both ferrocene-modified linear PEI and ferrocene-modified branched PEI was investigated by cyclic voltammetry, while electron diffusion coefficients reported for PEI-based redox polymers were determined by electrochemical impedance spectroscopy. In phosphate solutions at pH>7, cross-linked films of both redox polymers exhibited multiple redox wave behavior and were unstable. In contrast, in non-phosphate solutions, cross-linked films exhibited stable electrochemical behavior and fast electron transfer in solutions with pH<11. Gel swelling experiments suggested that the multiple wave behavior and instability exhibited in either phosphate solutions or at high pH in non-phosphate solutions were related to a combination of film collapse and electrolyte binding within the hydrogel. The electron diffusion coefficients for these polymers are on the order of 10-8 (mol cm(-2) s(-1/2)), which are approximately 40 times greater than other ferrocene-modified polymers. Incorporation of the enzyme, glucose oxidase, into these films demonstrated that these redox polymers were able to electrically communicate with the enzyme's flavin adenine dinucleotide (FAD) redox centers. Glucose sensors based on these films exhibited enzyme saturation current densities that ranged from 240 to 480 microA/cm2 in response to glucose, which were dependent upon the supporting electrolyte and pH. The sensitivity of these sensors at 5 mM glucose ranged from 10 to 48 microA.cm(-2).mM(-1).  相似文献   

12.
The complexation between poly(methacrylic acid) (PMAA) and poly(N, N-diethylacrylamide) (PDEAM) in aqueous phase was studied by UV-vis and fluorescence probe techniques. It was demonstrated that the complexation of PMAA with PDEAM occurs within a pH range of 1-6.5 and along with the complexation, the conformation of PMAA changed from a hypercoiled to a loose coiled form. The complex ratio between the two polymers is 1:1 (PMAA:PDEAM, in monomer unit). Salt effect studies showed that the complexation occurred due to formation of hydrogen bonds between the two polymers. Based upon these conclusions and the "compact micelle-like structure" for PMAA at low pH, a "ladder" model was proposed for the structure of PMAA-PDEAM complex formed at low pH.  相似文献   

13.
Convenient one-pot-two-step processes for chemical recycling of commercially available polyesters were conducted to produce the corresponding hydroxamic acids and hydrazides in high yields. Glycolysis of poly(ethylene 2,6-naphthalenedicarboxylate) in diethylene glycol into the corresponding oligomers, followed by aminolysis with hydroxylamine and hydrazine yielded 2,6-naphthalenedicarbohydroxamic acid in 96% and 2,6-naphthalenedicarbohydrazide in 85% overall yields. In a similar manner, terephthalohydroxamic acid and terephthalohydrazide were produced in 92 and 91%, respectively, from degradation of poly(tetramethylene terephthalate).  相似文献   

14.
The effect of pH on the complex formation between poly(acrylic acid) (PAA) and poly(ethylene oxide) (PEO) has been studied in aqueous solutions by turbidimetric and fluorescent methods. It was shown that the formation of insoluble interpolymer complexes is observed below a certain critical pH of complexation (pH(crit1)). The formation of hydrophilic interpolymer associates is possible above pH(crit1) and below a certain pH(crit2). The effects of polymer concentrations in solution and PEO molecular weight as well as inorganic salt addition on these critical pH values were studied. The polymeric films based on blends of PAA and PEO were prepared by casting from aqueous solutions with different pHs. These films were characterized by light transmittance measurements and differential scanning calorimetry. The existence of the pH value above which the polymers form an immiscible blend was demonstrated. The transitions between the interpolymer complex, miscible blend, and immiscible blend caused by pH changes are discussed. The recommendations for preparation of homogeneous miscible films based on compositions of poly(carboxylic acids) and various nonionic water-soluble polymers are presented.  相似文献   

15.
This article presents two novel artificial helical polymers, substituted polyacetylenes with urea groups in side chains. Poly( 4 ) and poly( 5 ) can be obtained in high yields (≥97%) and with moderate molecular weights (11,000–14,000). Poly( 4 ) contains chiral centers in side chains, and poly( 5 ) is an achiral polymer. Both of the two polymers adopted helical structures under certain conditions. More interestingly, poly( 4 ) exhibited large specific optical rotations, resulting from the predominant one‐handed screw sense. The helical conformation in poly( 5 ) was stable against heat, while poly( 4 ) underwent conformational transition from helix to random coil upon increasing temperature from 0 to 55 °C. Solvents had considerable influence on the stability of the helical conformation in poly( 4 ). The screw sense adopted by the helices was also largely affected by the nature of the solvent. Poly( 4 ‐co‐ 5 )s formed helical conformation and showed large optical rotations, following the Sergeants and Soldiers rule. By comparing the present two polymers (with one ? N? H groups) with the three polymers previously reported (with two ? N? H groups in side chains), the nature of the hydrogen bonds formed between the neighboring urea groups played big roles in the formation of stable helical conformation. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4112–4121, 2008  相似文献   

16.
Poly(hydroxamic acid) ligand was synthesized using ester functionalities of cellulose‐graft‐poly(methyl acrylate) copolymer, and products are characterized by Fourier transform infrared spectroscopy, field emission scanning electron microscopy, high‐resolution transmission electron microscopy, and X‐ray photoelectron spectroscopy analysis. The poly(hydroxamic acid) ligand was utilized for the sensing and removal of transition metal ions form aqueous solutions. The solution pH is found a key factor for the optical detection of metal ions, and the reflectance spectra of the [Cu‐ligand]n+ complex were observed to be the highest absorbance 99.5% at pH 6. With the increase of Cu2+ ion concentration, the reflectance spectra were increased, and a broad peak at 705 nm indicated that the charge transfer (π‐π transition) complex was formed. The adsorption capacity with copper was found to be superior, 320 mg g?1, and adsorption capacities for other transition metal ions were also found to be good such as Fe3+, Mn2+, Co3+, Cr3+, Ni2+, and Zn2+ were 255, 260, 300, 280, 233, and 223 mg g?1, respectively, at pH 6. The experimental data show that all metal ions fitted well with the pseudo‐second‐order rate equation. The sorption results of the transition metal ions onto ligand were well fitted with Langmuir isotherm model (R2 > 0.98), which implies the homogenous and monolayer character of poly(hydroxamic acid) ligand surface. Eleven cycles sorption/desorption process were applied to verify the reusability of this adsorbent. The investigation of sorption and extraction efficiency in each cycle indicated that this new type of adsorbent can be recycled in many cycles with no significant loss in its original detection and removal capability. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Modification of capillary electrophoresis (CE) capillaries by poly(hydroxyethyl methacrylate) (poly(HEMA), poly(diethylene glycol monomethacrylate) (poly(DEGMA) and poly(triethylene glycol monomethacrylate) (poly(TEGMA), was studied. Methods based on physical adsorption of the modifier and on its chemical binding were compared on the basis of the electroosmotic flow (EOF) reproducibility, the EOF dependence on the pH, the symmetry of the peak of positively charged tyramine, the stability of the coating and the separation of standard and milk proteins in the modified capillaries. Reproducible coatings were obtained by chemical binding of the polymers to the capillary walls and by coating with a solution of a polymer, as also demonstrated by the atomic force microscopy.  相似文献   

18.
Soluble brominated poly(arylene ether)s containing mono‐ or dibromotetraphenylphenylene ether and octafluorobiphenylene units were synthesized. The polymers were high molecular weight (weight‐average molecular weight = 115,100–191,300; number‐average molecular weight = 32,300–34,000) and had high glass‐transition temperatures (>279 °C) and decomposition temperatures (>472 °C). The brominated polymers were phosphonated with diethylphosphite by a palladium‐catalyzed reaction. Quantitative phosphonation was possible when 50 mol % of a catalyst based on bromine was used. The diethylphosphonated polymers were dealkylated by a reaction with bromotrimethylsilane in carbon tetrachloride followed by hydrolysis with hydrochloric acid. The polymers with pendant phosphonic acid groups were soluble in polar solvents such as dimethyl sulfoxide and gave flexible and tough films via casting from solution. The polymers were hygroscopic and swelled in water. They did not decompose at temperatures of up to 260 °C under a nitrogen atmosphere. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3770–3779, 2001  相似文献   

19.
Porous poly(hydroxamic acid) chelating resin was prepared by the reaction with poly(ethyl acrylate) crosslinked with divinylbenzene and hydrophilic crosslinking agent, and hydroxylamine. The hydrophilic crosslinking agents and diluent used in this article were ethylene glycol dimethacrylate or butanediol dimethacrylate, and 2,2,4-trimethyl pentane, respectively. The characterization of this type chelating resin was carried out by IR spectroscopy, density measurement, and scanning electron microscopy. Various metal binding properties such as extraction, kinetics, and selectivity were investigated with atomic absorption spectrometer and inductively coupled plasma spectrometer. Poly(hydroxamic acid) resins crosslinked with mixed crosslinking agents showed better metal extraction properties and faster adsorption rate than those crosslinked with divinylbenzene alone. And alkali treatment enhances the binding rate for metal ions because of the formation of other chelating ligands or micropores. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
姚萍 《高分子科学》2011,29(4):397-406
Butyl modified poly(allylamine)s with butyl substitution degrees of 15%to 70%were prepared.The polymers show pH sensitive property and lower critical solution temperature(LCST)behavior.The LCST appears at lower temperature,lower pH and lower polymer concentration for the polymer with higher butylated degree.The binding of native lysozyme with the polymers depends on the hydrophobicity of the polymers at the pH range that the protein and the polymer carry the same positive charges.The increase of polymer hydrophobicity can increase the binding with lysozyme,but the self-aggregation of the polymer decreases the binding.The bound lysozyme molecules can recover their native activity completely after the dissociation of the complexes.Compared with native lysozyme,the denatured one which exposes the hydrophobic residues can increase the binding with the polymer and form stable complex nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号