首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Anab initio study of the relative stability for the states2 A 1g and2 E g of C2H 6 + has been carried out. The results of the Open Shell Restricted Hartree-Fock calculations lead to assign the2 A 1 g as the ground state of the molecule in agreement with previous SCF calculations.The correlation energy associated to both states has been calculated within the correlation hole model and the results, contrary to those obtained from Configuration Interaction calculations, do not alter qualitatively the conclusions from SCF.  相似文献   

2.
The ground (N) state and the 1B1u(V) excited state of planar ethylene have been studied at the CPF and MR -SDCI levels of theory, using an extended CGTO basis set of the ANO type. The investigation especially addresses the near-degeneracy problem in the ground state and the coupling between the diffuse character of the π* orbital and the amount of correlation included in the wave function of the V state. The MR -SDCI results yield a vertical excitation energy in the range 7.8–8.0 eV, whereas the CPF result is 7.9 eV. The best MR -SDCI result for 〈1π*‖z2‖1π*〉 is 7.8, whereas CPF calculations based on MR -SDCI INOS give the value 6.7. It is clear from the results that these numbers have not converged and that more extended calculations than was possible in the present work would yield an even more compact wave function.  相似文献   

3.
Ab initio SCF as well as pseudopotential calculations were performed for determining equilibrium structures and relative stabilities of several disilyne isomers. For the singlet state there are only two structures, the bridged and the silavinylidene carbene, which correspond to minima on the energy hypersurface. The most stable of the six isomeric structures investigated is the bridged conformer in the 1A1 electronic state, followed by the silavinylidene carbene in the 1A1 and 3A2 electronic states. Inclusion of electron correlation by MRD-CI calculations has no qualitative influence on the relative stabilities found in the SCF calculations.  相似文献   

4.
The conformational preferences of the molecule 1,4-pentadien-3-one (divinylketone) have been studied by ab initio molecular orbital calculations and discussed in terms of interaction between molecular fragments. The calculations predict a molecular ground state having a fully coplanar s-cis, s-cis conformation. In addition, we find three other structures that represent local minima on the energy surface. These are a fully coplanar s-cis, s-trans form, and two nonplanar s-trans, s-trans forms having symmetries C2 and C1h, respectively. The energies of these forms relative to the ground state are 7.5, 19.2, and 35.9 kJ/mol, respectively. The coplanar s-trans, s-trans form represents a saddle point on the energy surface. All conformers and the saddle point have been completely geometry optimized by the gradient technique. For the ground state a complete in-plane harmonic force field has been evaluated.  相似文献   

5.
Multireference single and double configuration interaction (MRCI) calculations including Davidson (+Q) or Pople (+P) corrections have been conducted in this work for the reactants, products, and extrema of the doublet ground state potential energy surface involved in the N( 2 D) + CH4 reaction. Such highly correlated ab initio calculations are then compared with previous PMP4, CCSD(T), W1, and DFT/B3LYP studies. Large relative differences are observed in particular for the transition state in the entrance channel resolving the disagreement between previous ab initio calculations. We confirm the existence of a small but positive potential barrier (3.86 ± 0.84 kJ mol?1 (MR‐AQCC) and 3.89 kJ mol?1 (MRCI+P)) in the entrance channel of the title reaction. The correlation is seen to change significantly the energetic position of the two minima and five saddle points of this system together with the dissociation channels but not their relative order. The influence of the electronic correlation into the energetic of the system is clearly demonstrated by the thermal rate constant evaluation and it temperature dependance by means of the transition state theory. Indeed, only MRCI values are able to reproduce the experimental rate constant of the title reaction and its behavior with temperature. Similarly, product branching ratios, evaluated by means of unimolecular RRKM theory, confirm the NH production of Umemoto et al., whereas previous works based on less accurate ab initio calculations failed. We confirm the previous findings that the N( 2 D) + CH4 reaction proceeds via an insertion–dissociation mechanism and that the dominant product channels are CH2NH + H and CH3 + NH. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
SCF-MS-Xα calculations of the electronic structure of diatomic halogens and interhalogens XY (X = I, Br, Cl; Y = I, Br, Cl, F) have been used to investigate the bonding and nuclear quadrupole coupling in these molecules. Calculations have been carried out for the ground X 1 Σ electronic state, and for the excited B 3 Π0 state in the case of I2, Br2, ICl and IBr. Good agreement (to within 10% in most cases) is obtained between the calculated and observed nuclear quadrupole coupling constants for the molecules in the ground state. For the excited state the agreement is not as good, but the calculation does reproduce the observed decrease in the coupling constants to less than one quarter of their ground state values, and analysis of the contributions to the field gradients clearly shows the reasons for this. The electric dipole moments and electric quadrupole moments of the molecules have also been calculated. However, these prove to be much more strongly dependent on the variables used in the calculation (atomic sphere radii, inclusion of d orbitals). The results of the calculations have also been used to test some of the assumptions made in the Townes and Dailey method of analysis of nuclear quadrupole coupling data.  相似文献   

7.
The structure and vibrational frequencies of 1,4-benzodioxan in its S1(π, π*) electronic state have been calculated using the GAUSSIAN 03 and TURBOMOLE programs. The results have been compared to experimental data and also to the ground state. Structural data for the T1(π, π*) state have also been calculated. The theoretical frequencies agree very well with the experimental values for the S0 electronic ground state but are less accurate for the S1 excited state. Nonetheless, they provide valuable guidance for excited state calculations.  相似文献   

8.
The density functional theory (DFT) and the complete active space self‐consistent‐field (CASSCF) method have been used for full geometry optimization of carbon chains C2nH+ (n = 1–5) in their ground states and selected excited states, respectively. Calculations show that C2nH+ (n = 1–5) have stable linear structures with the ground state of X3Π for C2H+ or X3Σ? for other species. The excited‐state properties of C2nH+ have been investigated by the multiconfigurational second‐order perturbation theory (CASPT2), and predicted vertical excitation energies show good agreement with the available experimental values. On the basis of our calculations, the unsolved observed bands in previous experiments have been interpreted. CASSCF/CASPT2 calculations also have been used to explore the vertical emission energy of selected low‐lying states in C2nH+ (n = 1–5). Present results indicate that the predicted vertical excitation and emission energies of C2nH+ have similar size dependences, and they gradually decrease as the chain size increases. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

9.
(12/12)CASPT2, (16/14)CASPT2, B3LYP, and CCSD(T) calculations have been carried out on 1,8-Naphthoquinone (1,8- NQ ), to predict the low-lying electronic states and their relative energies in this non-Kekulé quinone diradical. CASPT2 predicts a 1A1 ground state, with three other electronic states—3B2, 3B1, and 1B1—within about 10 kcal/mol of the ground state in energy. On the basis of the results of these calculations, it is predicted that NIPES experiments on 1,8- NQ •– will find that 1,8- NQ is a diradical with a singlet ground state. © 2018 Wiley Periodicals, Inc.  相似文献   

10.
The potential energy surfaces and non-adiabatic dynamics of the C5H6NH 2 + protonated Schiff base (PSB3) have been investigated using the OM2 semiempirical Hamiltonian with GUGA configuration interaction. Three approaches to selecting the GUGA-CI active space are evaluated using closed-shell and open-shell molecular orbitals. Energy minima and minimum energy crossing points (MECPs) have been compared with ab initio CASSCF and CASPT2 results. Only the open-shell calculations give a qualitatively correct MECP. Minimum energy path (MEP) calculations demonstrate that a minimal active space gives a barrierless path from the planar S1 minimum to the ground state, whereas larger active spaces result in a small barrier to torsional motion. Surface hopping dynamics calculations indicate that this barrier induces bi-exponential dynamics. The comparable CASSCF S1 energy surface is barrierless, but the CASPT2 surface features an energy plateau, which may also lead to more complex dynamics.  相似文献   

11.
Summary The dipole moments and dipole polarizabilities of the 1A1, 1B1, and 3B1 electronic states of the water molecule have been calculated by using the CASSCF approach followed by the evaluation of the dynamic electron correlation contribution by the second-order perturbation scheme CASPT2. All calculations have been carried out in a specifically extended ANO basis set which accounts for the Rydberg character of the two excited states. In order to estimate the correctness and accuracy of the present data a scan over a variety of different active spaces for the CASSCF wave function has been made. The present results are superior to earlier CASSCF calculations, although their qualitative features remain essentially the same. The dipole moments in 1B1 and 3B1 states are predicted to be about 0.49 a.u. and 0.33 a.u., respectively, and have the opposite orientation with respect to the ground state dipole moment. The dipole polarizability tensors of the excited states are characterized by high anisotropy and are dominated by the in-plane component perpendicular to the symmetry axis. All their components are found to be about an order of magnitude larger than those of the ground state polarizability tensor. The excitation energy dependence on the choice of the active orbital space in the CASSCF reference function is also considered and the analysis of the present data concludes in the concept of what is called the mutually compatible active spaces for the two states involved in excitation. All CASPT2 results are in good agreement with the results of recent calculations carried out in the framework of the open-shell coupled cluster formalism. This agreement confirms the high efficiency of the CASSCF/CASPT2 approach to the treatment of the electron correlation effects.  相似文献   

12.
The first high level ab initio quantum‐chemical calculations of potential energy surfaces (PESs) for low‐lying singlet excited states of norbornadiene in the gas phase are presented. The optimization of the stationary points (minima and conical intersections) and the recalculation of the energies were performed using the multireference configuration interaction with singles (MR‐CIS) and the multiconfigurational second‐order perturbation (CASPT2) methods, respectively. It was shown that the crossing between valence V2 and Rydberg R1 states close to the Franck–Condon (FC) point permits an easy population switch between these states. Also, a new deactivation path in which the doubly excited state with (π3)2 configuration (DE) has a prominent role in photodeactivation from the R1 state due to the R1/DE and the DE/V1 conical intersections very close to the R1 and DE minima, respectively, was proposed. Subsequent deactivation from the V1 to the ground state goes through an Olivucci–Robb‐type conical intersection that adopts a rhombic distorted geometry. The deactivation path has negligible barriers, thereby making ultrafast radiationless decay to the ground state possible. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
CEPA-PNO and PNO-CI calculations have been performed for the potential energy curves of the He 2 + ground state and the six lowest excited states of He2 in the range of 1.4 a0R ≤ 3.5 a0. The calculated equilibrium distances as well as the spectroscopic constants are in very good agreement with molecular constants as derived experimentally from the rotation-vibration spectrum of He2 by Ginter, except for thec 3g + state. This latter discrepancy is probably due to an “obligatory” hump in thec 3g + state occurring at 3.5 a0 which cannot be properly treated in our calculation. The relative energetic positions of the six lowest states and their ionization energies are reproduced by our calculations with an accuracy of 0–400 cm−1. Extrapolation of our results to infinite basis sets leads to estimates of the dissociation energies of He2 excited states which cannot be measured spectroscopically because of the humps in all these states.  相似文献   

14.
The oxidation of the trans,cis‐( 2 ) and trans,trans‐epoxides ( 3 ) of differently substituted (Z)‐3‐arylidene‐1‐thioflavan‐4‐ones ( 1 ) with dimethyldioxirane (DMD) yielded the appropriate sulfoxides ( 4, 5 ) and sulfones ( 6, 7 ). The structures were elucidated by the extensive application of one‐ and two‐dimensional 1H, 13C and 17O NMR spectroscopy. The conformational analysis was achieved by the application of 3J(C,H) coupling constants, NOESY responses and ab initio calculations. The preferred ground‐state conformers (twisted envelope‐A, twisted envelope‐B for 6 and twisted envelope‐A, envelope‐B for 7 ) were obtained as global minima of the theoretical ab initio MO study and also the examination of the 17O and 13C chemical shifts, calculated for the global minima structures of the sulfone isomers by the GIAO method. Analogous results, obtained for the sulfoxide isomers ( 4, 5 ), not only led to the preferred conformers but also gave evidence for the trans arrangement of the 2‐Ph group and the oxygen atom of the S?O group. Chemical shift differences between the isomers, sulfoxides and sulfones were corroborated by ab initio calculations of the anisotropic effects of the oxirane ring and the S?O and SO2 groups. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
Extensive SCF -LCAO -MO variational and perturbative configuration interaction (CI ) calculations framed within an effective core potential approximation have been performed to determine the two experimentally observed geometrical isomers of Ag O2 and the interconversion route between them. These structural forms, associated to the ground-state local minima, yield virtually the same energy, and their spontaneous interconversion is strongly indicated, which agrees fairly well with the experimental measurements. The reaction Ag + O2 → Ag O2 was theoretically analyzed along a CI fully optimized energy pathway for the ground and various excited states, within C2v and Cs symmetry. Although a tight-ion pair (A O) character is predicted for the ground state at the equilibrium geometries, its dissociation leads to neutral rather than to ionic fragments. The study of the reaction path within Cs symmetry shows an avoided crossing between the ground state and another 2A″ potential curve where the former correlates adiabatically with the reactants Ag(2S) + O2(1Δg). This indicates that the formation of the complex proceeds via a reactive state of molecular oxygen. The higher 2A″ electronic curves correlate with the metal 2P excited state, and the oxygen binding is found to be less favorable. The present results are shown to have an important bearing on the experimentally known catalytic properties of oxygen adsorbed on silver surfaces.  相似文献   

16.
The complex potential energy surface (PES) for the isomerization of C5H5NO species, including 18 isomers and 23 interconversion transition states, is probed theoretically at the B3LYP/6‐311++G(d,p) and MP2//B3LYP/6‐311++G(d,p) levels of theory. The geometries and relative energies for various stationary points were determined. The zero‐point vibrational energy (ZPVE) corrections have been made to calculate the reliable energy. We predicted a six‐membered ring structure as a global minima isomer I, which is 118.49 and 131.48 kcal · mol?1 more stable than the least stable, four‐ and three‐membered ring isomer VIII at B3LYP and MP2//B3LYP levels of theory, respectively. The isomers and interconversion transition states have verified by frequency calculation. The intrinsic reaction coordinates (IRC) calculations have been performed to confirm that each transition state is linked by the desired reactants and products. The isomer stability has been studied using relative energies, chemical hardness, and chemical potential. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

17.
Harmonic frequencies obtained by finite-differences from nonlocal density functional calculations are presented for the ground states of Al4 (neutral and cationic). The effect of varying the step size used in the finite-difference evaluation and the influence of the density convergence threshold are discussed. Potential energy curves along the most important normal coordinates are shown. With these results, we found that for Al4 the square and the rhombus minima are almost degenerate with each other, while for Al4+1, the rhombus is more stable and the square is a transition state. © 1997 John Wiley & Sons, Inc.  相似文献   

18.
Several bent valence states of CO2 are characterized by means of full-valence-space MCSCF calculations. The ground state potential energy surface exhibits a double well corresponding to a ring minimum, with C2vsymmetry (1A1) and a 73.1° OCO angle, in addition to the linear (1σ) global minimum. The transition state for the ring opening process, which has a barrier of 12.1 kcal/mole with respect to the ring minimum, is however found to have Cs symmetry. Double minima are also shown to exist for the 1A2, 1B1 and 1B2 excited states. However, in these cases all minima are bent. Cross sections through the ground state potential energy surface corresponding to the two collinear exchange reactions O(1D) + CO(1σ+) → OC(1σ+) + O(1D) C(3P) + O2(3σ) → CO(1σ+) + O(1D) are also calculated and their energy contour maps are reported. The latter reveals the existence of a stable linear intermediate with the structure COO. © 1994 John Wiley & Sons, Inc.  相似文献   

19.
Summary The electronic spectra forcis-1,3-butadiene andcis-1,3,5-hexatriene have been studied using multiconfiguration second-order perturbation theory (CASPT2) and extended ANO basis sets. The calculations comprise all singlet valence excited states below 8.0 eV, the first 3s, 3p, 3d Rydberg states, and the second 3s state. The four lowest triplet states were also studied. The resulting excitation energies forcis-hexatriene have been used in an assignment of the experimental spectrum, leading to a maximum deviation of 0.13 eV for the vertical transition energies. The calculations place the 11 B 2 state 0.04 eV below the 21 A 1 state. 16 excited states were studied incis-butadiene, using a CASPT2 optimized ground state geometry. The 11 B 2 state was located at 5.58 eV, 0.46 eV below the 21 A 1 state and 0.09 eV above the experimental value. No experimental assignments are available for the 15 other transitions. On leave from: Departmento de Quimica Física, Universidad de Valencia, Dr. Moliner 50, Burjassot, E-46100-Valencia, Spain  相似文献   

20.
The [FeIV(O)(Me3NTB)]2+ (Me3NTB=tris[(1-methyl-benzimidazol-2-yl)methyl]amine) complex 1 has been shown by Mössbauer spectroscopy to have an S=1 ground state at 4 K, but is proposed to become an S=2 trigonal-bipyramidal species at higher temperatures based on a DFT model to rationalize its very high C−H bond-cleavage reactivity. In this work, 1H NMR spectroscopy was used to determine that 1 does not have C3-symmetry in solution and is not an S=2 species. Our results show that 1 is unique among nonheme FeIV=O complexes in retaining its S=1 spin state and high reactivity at 193 K, providing evidence that S=1 FeIV=O complexes can be as reactive as their S=2 counterparts. This result emphasizes the need to identify factors besides the ground spin state of the FeIV=O center to rationalize nonheme oxoiron(IV) reactivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号