首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
In order to understand the distribution and the cycle of arsenic compounds in the marine environment, the horizontal distributions of arsenic(V) [As(V)], arsenic(III) [As(III)], monomethylarsonic acid (MMAA) and dimethylarsinic acid (DMAA) in the Indian Pacific Oceanic surface waters have been investigated. This took place during cruises of the boat Shirase from Tokyo to the Syowa Station (15 November–19 December 1990), of the tanker Japan Violet from Sakai to Fujayrah (28 July–17 August 1991) and of the boat Hakuho-maru from Tokyo to Auckland (19 September–27 October 1992). Vertical distributions of arsenic in the west Pacific Ocean have also been investigated. The concentration of As(V) was found to be relatively higher in the Antarctic than in the other areas. Its concentration varied from 340 ng dm?3 (China Sea) to 1045 ng dm?3 (Antarctic). On the other hand, the concentrations of the biologically produced species, MMAA and DMAA, were extremely low in the Antarctic and southwest Pacific waters. Their concentrations in Antarctic waters were 8 ng dm?3 and 22 ng dm?3 and those in the southwest Pacific were 12 ng dm?3 and 25 ng dm?3. In the other regions the concentration varied from 16 ng dm?3 (China Sea) to 36 ng dm?3 (north Indian Ocean) for MMAA and from 50 ng dm?3 (east Indian Ocean) to 172 ng dm?3 (north Indian Ocean) for DMAA. As a result, with the exception of Antarctic and southwest Pacific waters, the percentages of each arsenic species in the surface waters were very similar and varied from 52% (east Indian Ocean) to 63% (northwest Pacific Ocean) for As(V), from 22% (northwest Pacific Ocean) to 27% (east Indian Ocean) for As(III) and from 15% (northwest Pacific Ocean) to 21% (north and east Indian Oceans) for the methylated arsenics (MMAA+DMAA). These percentages in Antarctic waters were 97%, 0.2% and 2.8%, respectively, and those in the southwest Pacific Ocean were 97% for As(V)+As(III) and 3% for MMAA+DMAA. The very low concentrations of the biologically produced species in Antarctic waters and that of methylated arsenic in southwest Pacific waters indicated that the microorganism communities in these oceans was dominated by microorganisms having a low affinity towards arsenic. Furthermore, microorganism activity in the Antarctic was also limited due to the much lower temperature of the seawater there. The vertical profile of inorganic arsenic was 1350 ng dm?3 in surface waters, 1500 ng dm?3 in bottom waters with a maximum value of 1700 ng dm?3 at a depth of about 2000 m in west Pacific waters. This fact suggested the uptake of arsenic by microorganisms in the surface waters and the co-precipitation of arsenic with hydrated heavy-metal oxides in bottom waters. The suggested uptake of inorganic arsenic and subsequent methylation was also supported by the profile of DMAA, with a high concentration of about 26 ng dm?3 in surface water and a significant decrease to a value of 9 ng dm?3 at a depth of 1000 m.  相似文献   

2.
The effect of seasonal temperature change on the release of methylated arsenic from macroalgae, phytoplankton and sediment porewaters has been investigated by a series of controlled laboratory experiments. The appearance of dissolved arsenic species in the overlying waters was monitored using a coupled hydride generation/GC AA analytical technique. The liberation of dissolved arsenic species by the macroalgae Ascophyllum nodosum was examined under estuarine conditions at 5 °C and 15 °C. At the lower temperature the release rates were 0.2 μg kg?1 h?1 (wet weight of material) for monomethylarsenic (MMA) and 0.5 μg kg?1 h?1 for dimethylarsenic (DMA), whereas at 15 °C the rates were 0.4 μg kg?1 h?1 and 3.2 μg kg?1h?1, respectively. Incubation experiments were also carried out at 15 °C using the diatom Skeletonema costatum. During the log growth phase, when chlorophyll a concentrations were in the range 1-5 μg dm?3, the rate of appearance of DMA in the water was ~3 ng dm?3 h?1. Sediment samples from the freshwater and seawater end-members of the Tamar Estuary, UK, were incubated under natural conditions at 5 °C and 15 °C. The freshwater sediments released DMA in preference to MMA; the concentrations of both species increased exponentially and reached a steady state in the overlying water after 250 h. Considerably more DMA was produced at 15 °C than at 5 °C, whilst the amount of MMA produced appeared to be insensitive to the temperature increase. In contrast, the seawater sediments always produced more MMA than DMA and the increase in temperature had little effect on the production of either MMA or DMA. The results of the laboratory experiments were compared with field observations in temperate estuaries, including the Tamar Estuary. The implications of changes of water temperature on the fate of arsenic in estuaries is discussed and modifications to the estuarine arsenic cycle are proposed.  相似文献   

3.
The analysis of ultraviolet (UV)-irradiated and untreated seawater samples has shown that the dissolved arsenic content of marine waters cannot be completely determined by hydride generation–atomic absorption spectrophotometry without sample pretreatment. Irradiation of water samples obtained during a survey of arsenic species in coastal waters during the summer of 1988 gave large increases in the measured speciation. Average increases in the measured speciation. Average increases in total arsenic, monomethylarsenic and dimethylarsenic were 0.29 μg As dm?3 (25%), 0.03 μg As dm?3 (47%) and 0.12 μg As dm?3 (79%), respectively. Overall, an average 25% increase in the concentration of dissolved arsenic was observed following irradiation. This additional arsenic may be derived from compounds related to algal arsenosugars or to their breakdown products. These do not readily yield volatile hydrides when treated with borohydride and are not therefore detected by the normal hydride generation technique. This has important repercussions as for many years this procedure, and other analytical procedures which are equally unlikely to respond to such compounds, have been accepted as giving a true representation of the dissolved arsenic speciation in estuarine and coastal waters. A gross underestimate may therefore have been made of biological involvement in arsenic cycling in the aquatic environment.  相似文献   

4.
We calculated the intake of each chemical species of dietary arsenic by typical Japanese, and determined urinary and blood levels of each chemical species of arsenic. The mean total arsenic intake by 35 volunteers was 195±235 (15.8-1039) μg As day?1, composed of 76% trimethylated arsenic (TMA), 17.3% inorganic arsenic (Asi), 5.8% dimethylated arsenic (DMA), and 0.8% monomethylated arsenic (MA): the intake of TMA was the largest of all the measured species. Intake of Asi characteristically and invariably occurred in each meal. Of the intake of Asi, 45-75% was methylated in vivo to form MA and DMA, and excreted in these forms into urine. The mean measured urinary total arsenic level in 56 healthy volunteers was 129±92.0 μg As dm?3, composed of 64.6% TMA, 26.7% DMA, 6.7% Asi and 2.2% MA. The mean blood total arsenic level in the 56 volunteers was 0.73±0.57 μg dl?1, composed of 73% TMA, 14% DMA and 9.6% Asi. The urinary TMA levels proved to be significantly correlated with the whole-blood TMA levels (r = 0.376; P<0.01).  相似文献   

5.
Arsenic speciation in the Itchen estuary and Southampton Water (UK) has been shown to vary seasonally, with detectable (>0.02μg As dm?3) dissolved arsenic(III) and methylated arsenic only being present from May to early October. This corresponds to the time period during which water temperatures exceed 12°C. For the remainder of the year, inorganic arsenic(V) was the only detectable species. At its peak, ca 30% of the dissolved arsenic was present as methylated forms with dimethylarsenic (DMAs) being the predominant bioarsenical. Significant quantities of monomethyl-arsenic (MMAs) and inorganic arsenic(III) were also present, however. The concentrations of the bioarsenical species varied with position in the estuary and generally increased with salinity. Measurements made during the period of peak algal activity implicated the highsalinity area of the estuary as the most probable region in which the methylated arsenicals are generated. At some sites, a distinct lag was observed between the appearance of dimethylarsenic and the detection of arsenic(III)and monomethylarsenic. Chlorophyll a concentration proved to be a poor predictor of the appearance of reduced and methylated arsenic in the water column. Possible sources of dissolved methylated arsenic are discussed.  相似文献   

6.
The accumulation of arsenic by Dunaliella sp. was examined by using a solution containing arsenic only as a first approach to the study of arsenic recovery by aqueous systems. The accumulation of arsenic by Dunaliella sp. was rapid, with equilibrium established in 8 h with respect to arsenic partioning between dissolved and particulate phase. The optimum accumulation was at pH 8.2, NaCl 20 g dm?3, illumination 5000–10000 lux and temperature 22°C. Increased phosphate concentration significantly decreased the uptake of arsenic in the culture. These results suggested that accumulation of arsenic by Dunaliella sp. depended upon biological activity.  相似文献   

7.
Accumulation, biomethylation and excretion of arsenic by the arsenic-tolerant freshwater blue–green alga, Phormidium sp., which had been isolated from an arsenic-polluted environment, were investigated. The cellular growth curves were in fair agreement with a ‘logistic curve’ equation. The growth increased with an increase in the surrounding arsenic concentration up to 100 m?g g?1. The cells survived even at 7000 m?g g?1. The arsenic concentration of the cells increased with an increase of the surrounding arsenic concentration up to 7000 m?g g?1. Phosphorus concentrations in the medium affected the growth and arsenic accumulation. No arsenic was accumulated by cells killed by ethanol. The arsenic was methylated to the extent of 3.2% of the total arsenic accumulated. When the cells were transferred into an arsenic-free medium, 85% of the arsenic accumulated was excreted; 58% of the excreted arsenic was in methylated form implying extensive methylation in the arsenic-free medium.  相似文献   

8.
The profile distribution of arsenic(III) and arsenic(V) species in soil and groundwater was investigated in the samples collected in 2005 from a hand-drilled well, in the Bozanta area, Baia Mare region, Romania. The total content of arsenic in the soil was in the range of 525–672 mg kg−1 exceeding 21–27 times the action trigger level for sensitive soil. 0.9–11.3 % of the total content was soluble in water, 83.0–92.6 % in 10 mol dm−3 HCl and 2.6–13.3 % was the residual fraction. Arsenic(V) was the dominant arsenic species in the soil in the range of 405–580 mg kg−1. The distribution and mobility of arsenic species was governed by soil pH and contents of Al, Fe, and Mn. The mobility of arsenic(V) decreased with depth, while that of arsenic(III) was high at the surface and in the proximity of groundwater. The total concentration of arsenic in groundwater was (43.40 ± 1.70) μg dm−3, which exceeded the maximum contaminant level of 10 μg dm−3. Presented at the 33rd International Conference of the Slovak Society of Chemical Engineering, Tatranské Matliare, 22–26 May 2006.  相似文献   

9.
Arsenic is ubiquitous in the environment. Although the average arsenic concentrations in rocks (~2 mg kg?1), soils (~2 mg kg?1), freshwater (~1 m?g dm?3), seawater (~2 m?g dm?3) and organisms is generally low, high arsenic concentrations in limited areas are not uncommon. Whereas terrestrial organisms appear not to accumulate arsenic, marine organisms effectively concentrate arsenic to levels thousand of times higher than in ocean waters. The geochemical cycle and mineralogy of arsenic are reviewed with some emphasis towards Japanese locations and arsenic concentrations (averages, ranges) found in samples from the lithosphere, pedosphere, hydrosphere and biosphere are tabulated and discussed.  相似文献   

10.
Homogenized aliquots (100 g) of the liver (8.4 kg, 5 m?g As g?1) of a tiger shark (Galeocerdo cuvier) were extracted with chloroform/methanol, and the extracts purified by countercurrent extraction (hexane/87% ethanol), silica gel column chromatography (chloroform/methanol mixtures as mobile phases), and silica gel thin-layer chromatography (chloroform/methanol/acetic acid). The purified samples (24 mg arsenic g?1) gave no 31P NMR signal, but gave 1H and 13C NMR signals with similarities to those of dipalmitoylphosphatidic acid and salad on and also signals indicative of the presence of methylated arsenic compounds. The sample could contain a diacyl glyceride with a methylated arsenic group.  相似文献   

11.
Pooled livers and pooled kidneys from rats or mice were homogenized and spiked with arsenite or arsenate in the concentration range 1.3–20 μmol dm?3. Methylarsenic and dimethylarsenic compounds were determined by the hydride generation technique in the homogenates after a 90 min incubation at 37°C. The rat homogenates methylated arsenite and arsenate more efficiently than the mouse homogenates. Monomethylated arsenic was present in larger amounts than dimethylated arsenic in the rat homogenates. In the absence of reduced glutathione (GSH), no methylation occurred. Addition of GSH promoted monomethylation and dimethylation, whereas dithiothreitol and mercaptoethanol (10 mmol dm?3) fostered only monomethylation. The amounts of monomethylated arsenic in the rat liver homogenates increased with increasing arsenite concentration (1.3–20 μmol dm?3) however, the percentage of arsenic that had been methylated decreased. A similar trend, but with much less monomethylarsenic formed, was observed for arsenate-spiked homogenates. Rat kidney homogenates methylated arsenite and arsenate to a much smaller extent than rat liver homogenates. The Km values for the monomethylation in rat liver homogenates were found to be 5.3 μmol dm?3 for arsenite and 59 μmol dm?3 for arsenate.  相似文献   

12.
Tolerance, bioaccumulation, biotransformation and excretion of arsenic compounds by the fresh–water shrimp (Neocaridina denticulata) and the killifish (Oryzias latipes) (collected from the natural environment) were investigated. Tolerances (LC50) of the shrimp against disodium arsenate [abbreviated as As(V)], methylarsonic acid (MAA), dimethylarsinic acid (DMAA), and arsenobetaine (AB) were 1.5, 10, 40, and 150μg As ml?1, respectively. N. denticulata accumulated arsenic from an aqueous phase containing 1 μg As ml?1 of As(V), 10 μg As ml?1 of MAA, 30 μg As ml?1 of DMAA or 150 μg As ml?1 of AB, and biotransformed and excreted part of these species. Both methylation and demethylation of the arsenicals were observed in vivo. When living N. denticulata accumulating arsenic was transferred into an arsenic–free medium, a part of the accumulated arsenic was excreted. The concentration of methylated arsenicals relative to total arsenic was higher in the excrement than in the organism. Total arsenic accumulation in each species via food in the food chain Green algae (Chlorella vulgaris) → shrimp (N. denticulata) → killifish (O. latipes) decreased by one order of magnitude or more, and the concentration of methylated arsenic relative to total arsenic accumulated increased successively with elevation in the trophic level. Only trace amounts of monomethylarsenic species were detected in the shrimp and fish tested. Dimethylarsenic species in alga and shrimp, and trimethylarsenic species in killifish, were the predominant methylated arsenic species, respectively.  相似文献   

13.
A simple, economic and sensitive method for selective determination of As(III) and As(V) in water samples is described. The method is based on selective coprecipitation of As(III) with Ce(IV) hydroxide in presence of an ammonia/ammonium buffer at pH 9. The coprecipitant was collected on a 0.45 µm membrane filter, dissolved with 0.5 mL of conc. nitric acid and the solution was completed to 2 or 5 mL with distilled water. As(III) in the final solutions was determined by graphite furnace atomic absorption spectrometry (GFAAS). Under the working condition, As(V) was not coprecipitated. Total inorganic arsenic was determined after the reduction of As(V) to As(III) with NaI. The concentration of As(V) was calculated by the difference of the concentrations obtained by the above determinations. Both the determination of arsenic with GF-AAS in presence of cerium and the coprecipitation of arsenic with Ce(IV) hydroxide were optimised. The suitability of the method for determining inorganic arsenic species was checked by analysis of water samples spiked with 4–20 µg L?1 each of As(III) and As(V). The preconcentration factor was found to be 75 with quantitative recovery (≥95%). The accuracy of the present method was controlled with a reference method based on TXRF. The relative error was under 5%. The relative standard deviations for the replicate analysis ( n?=?5) ranged from 4.3 to 8.0% for both As(III) and As(V) in the water samples. The limit of detection (3σ) for both As (III) and As(V) were 0.05 µg L?1. The proposed method produced satisfactory results for the analysis of inorganic arsenic species in drinking water, wastewater and hot spring water samples.  相似文献   

14.
The concentrations of total arsenic and arsenic species in the complete organism of the crayfish Procambarus clarkii and its various parts (hepatopancreas, tail, and remaining parts) were analyzed in order to discover the distribution of arsenic and its species. With this information it will be possible to establish where the chemical forms of this metalloid tend to accumulate and what risks may derive from the contents and species present in the edible parts of this crustacean. The total arsenic content in the complete organism and in the various parts analyzed ranged from 2.5 to 12 µg g?1 dry mass (DM), with inorganic arsenic representing 18 to 34% of total arsenic. The arsenical composition varied according to the part of the crayfish considered. The hepatopancreas had the highest levels of total arsenic (9.2–12 µg g?1 DM) and inorganic arsenic (2.7–3.2 µg g?1 DM). The tail (edible part) had the lowest levels of both total arsenic (2.5–2.6 µg g?1 DM) and inorganic arsenic (0.46–0.64 µg g?1 DM). The predominant organoarsenical species were the dimethylarsinoylribosides: glycerol riboside in the hepatopancreas, sulfate riboside in the tail, and sulfonate and phosphate ribosides in the remaining parts. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
A new and highly sensitive inhibitory kinetic fluorescence method for the determination of arsenic (III) has been established based on its inhibitory effect on the oxidation reaction of Acridine red (ADR) by KBrO3 in sulphuric acid medium. The reaction has been followed by measuring the enhancement of fluorescence at 550?nm. It relies on the linear relationship where the change in the fluorescence (ΔF) versus added As(III) amounts in the range of 0–0.450?µg?mL?1 is plotted, under the optimum conditions. The sensitivity of the proposed method, i.e. the limit of detection, is 2.1?×?10?2?ng?mL?1. The method is featured with good accuracy and reproducibility for arsenic (III) determination. This method was successfully applied for the quantitative determination of arsenic (III) in food products samples, and the relative standard deviations and the recoveries were in ranges of 2.31–2.83% and 90.0–107.2%, respectively. A review of recently published catalytic or inhibiting kinetic methods for the determination of arsenic (III) has also been presented for comparison. The mechanism of reaction was studied.  相似文献   

16.
The arsenic species present in samples of the crayfish Procambarus clarkii caught in the area affected by the toxic mine‐tailing spill at Aznalcóllar (Seville, Southern Spain) were analyzed. The total arsenic contents ranged between 1.2 and 8.5 µg g?1 dry mass (DM). With regard to the different species of arsenic, the highest concentrations were for inorganic arsenic (0.34–5.4 µg g?1 DM), whereas arsenobetaine, unlike the situation found in marine fish products, was not the major arsenic species (0.16 ± 0.09 µg g?1 DM). Smaller concentrations were found of arsenosugars 1a (0.18 ± 0.11 µg g?1 DM), 1b (0.077 ± 0.049 µg g?1 DM), 1c (0.080 ± 0.089 µg g?1 DM), and 1d (0.14 ± 0.13 µg g?1 DM). The presence of two unknown arsenic species was revealed (U1: 0.058 ± 0.058 µg g?1 DM; U2: 0.12 ± 0.12 µg g?1 DM). No significant differences were seen with respect to the total arsenic contents between the sexes. However, significant differences in the total arsenic contents were revealed between the area affected by the spill and the area not affected, the contents being greater in the affected area. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
Two bacteria exhibiting resistance to toxic arsenic were isolated. These had been contaminated with arsenic in a Chlorella sp. culture medium containing arsenic. The two bacteria were identified as Klebsiella oxytoca and Xanthomonas sp., and grew well in a peptone medium at neutral pH at 30°C, reaching the stationary phase in ca 100h and 70h, respectively. The growth of the bacteria was not affected by arsenic(V) concentrations in the medium as high as 1000mg dm?3. The bacteria bioaccumulated arsenic, a part of the arsenic being methylated. The bioaccumulation exhibited its peak around the turing point from the log phase to the stationary phase. The relative content of methylated arsenic in the excrement was greater than that in the bacterial cells. Adaptation treatment of inorganic arsenic caused an increase in the bioaccumulation of inorganic arsenic by K. oxytoca. Such a situation was not observed in the case of Xanthomonas sp. The bacteria also bioaccumulated methylated arsenic compounds, and demethylation of these species was observed. When the bacteria were killed by ethanol, arsenic was not taken up by the cells.  相似文献   

18.
Organic arsenic compounds (trialkylarsines) present in natural gas were extracted by 10 cm3 of concentrated nitric acid from 1 dm3 of gas kept at ambient pressure and temperature. The flask containing the gas and the acid was shaken for 1 h on a platform shaker set at the highest speed. The resulting solution was mixed with concentrated sulfuric acid and heated to convert all arsenic compounds to arsenate. Total arsenic was determined in the mineralized solutions by hydride generation. The arsenic concentrations in natural gas samples from a number of wells in several gas fields were in the range 0.01–63 μ As dm?3. Replicate determinations of arsenic in a gas sample with an arsenic concentration of 5.9 μ dm?3 had a relative standard deviation of 1.7%. Because of the high blank values, the lowest arsenic concentration that could be reliably determined was 5 ng As dm?3 gas. Analysis of nonmineralized extracts by hydride generation identified trimethylarsine as the major arsenic compound in natural gas. Low-temperature gas chromatography-mass spectrometry showed more directly than the hydride generation technique, that trimethylarsine accounts for 55–80% of the total arsenic in several gas samples. Dimethylethylarsine, methyldiethylarsine, and triethylarsine were also identified, in concentrations decreasing with increasing molecular mass of the arsines.  相似文献   

19.
The vertical profiles of inorganic arsenic [As(III)+As(V)], monomethylarsonic acid (MMAA), dimethylarsinic acid (DMAA), inorganic germanium and monomethylgermanium (MMGe) were investigated at three sampling stations in the Pacific Ocean. In addition, the concentrations of these species in various surface waters have also been determined. The vertical profile of both inorganic arsenic and germanium displayed low concentrations, 1100 to 1450 ng dm3 for inorganic arsenic and <0.7 to 2 ng dm3 for inorganic germanium, in the surface zone. The concentrations of inorganic arsenic increased with depth to maximum concentrations that varied from 1500 to 2200 ng dm3 at a depth of 2000 m and then slowly decreased to concentrations that varied from 1300 to 1900 ng dm3 at a depth of 5000 m. On the other hand, the vertical profiles of inorganic germanium displayed a relatively constant concentration (4 to 8 ng dm3) from a depth of 2000 m to 5000 m. These vertical profiles of inorganic germanium were linearly correlated with those of silicate with a Ge/Si molar ratio of 0.715×106. Both MMAA and DMAA displayed maximum concentrations in surface water and abruptly dropped with depth from 0 to 200 m. The concentration in surface water was 12 ng dm3 for MMAA and varied from 48 to 185 ng dm3 for DMAA. At depths >200 m, MMAA and DMAA were generally at comparable concentrations of about 3 ng dm3. In the case of MMGe, it was uniformly distributed throughout the water column at a concentration of approximately 16 ng dm3, indicating that MMGe was not involved in the biogeochemical cycling of inorganic germanium. In deep waters (>200 m), the concentrations of both inorganic arsenic and germanium increased from the southern Tasman Sea to the north. The increase in inorganic arsenic concentration was linearly correlated with that of phosphate and the increase in inorganic germanium concentration was linearly correlated with that of silicate, with apparent δAs/δP and δGe/δSi molar ratios of 4.53×103 and 0.73×106, respectively. © 1997 by John Wiley & Sons, Ltd.  相似文献   

20.
Arsenic circulation in an arsenic-rich freshwater ecosystem was elucidated to detect arsenic species in the river water and in biological samples living in the freshwater environment. Water-soluble arsenic compounds in biological samples were extracted with 70% methanol. Samples containing arsenic compounds in the extracts were treated with 2 mol dm3 of sodium hydroxide and reduced with sodium borohydride. The detection of arsenic species was accomplished using a hydride generation/cold trap/cryofocus/gas chromatography-mass spectrometry (HG/CT/CF/GC-MS) system. The major arsenic species in the river water, freshwater algae and fish are inorganic arsenic, dimethylarsenic and trimethylarsenic compounds, respectively. Trimethylarsenic compounds are also detected in aquatic macro-invertebrates. The freshwater unicellular alga Chlorella vulgaris, in a growth medium containing arsenate, accumulated arsenic and converted it to a dimethylarsenic compound. The water flea Daphnia magna, which was fed on arsenic-containing algae, converted it to a trimethylarsenic species. © 1997 by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号