首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Girth pairs were introduced by Harary and Kovács [Regular graphs with given girth pair, J. Graph Theory 7 (1983) 209-218]. The odd girth (even girth) of a graph is the length of a shortest odd (even) cycle. Let g denote the smaller of the odd and even girths, and let h denote the larger. Then (g,h) is called the girth pair of the graph. In this paper we prove that a graph with girth pair (g,h) such that g is odd and h?g+3 is even has high (vertex-)connectivity if its diameter is at most h-3. The edge version of all results is also studied.  相似文献   

2.
Zhu [X. Zhu, Circular-perfect graphs, J. Graph Theory 48 (2005) 186-209] introduced circular-perfect graphs as a superclass of the well-known perfect graphs and as an important χ-bound class of graphs with the smallest non-trivial χ-binding function χ(G)≤ω(G)+1. Perfect graphs have been recently characterized as those graphs without odd holes and odd antiholes as induced subgraphs [M. Chudnovsky, N. Robertson, P. Seymour, R. Thomas, The strong perfect graph theorem, Ann. Math. (in press)]; in particular, perfect graphs are closed under complementation [L. Lovász, Normal hypergraphs and the weak perfect graph conjecture, Discrete Math. 2 (1972) 253-267]. To the contrary, circular-perfect graphs are not closed under complementation and the list of forbidden subgraphs is unknown.We study strongly circular-perfect graphs: a circular-perfect graph is strongly circular-perfect if its complement is circular-perfect as well. This subclass entails perfect graphs, odd holes, and odd antiholes. As the main result, we fully characterize the triangle-free strongly circular-perfect graphs, and prove that, for this graph class, both the stable set problem and the recognition problem can be solved in polynomial time.Moreover, we address the characterization of strongly circular-perfect graphs by means of forbidden subgraphs. Results from [A. Pêcher, A. Wagler, On classes of minimal circular-imperfect graphs, Discrete Math. (in press)] suggest that formulating a corresponding conjecture for circular-perfect graphs is difficult; it is even unknown which triangle-free graphs are minimal circular-imperfect. We present the complete list of all triangle-free minimal not strongly circular-perfect graphs.  相似文献   

3.
For any two graphs F and G, let hom(F,G) denote the number of homomorphisms FG, that is, adjacency preserving maps V(F)→V(G) (graphs may have loops but no multiple edges). We characterize graph parameters f for which there exists a graph F such that f(G)=hom(F,G) for each graph G.The result may be considered as a certain dual of a characterization of graph parameters of the form hom(.,H), given by Freedman, Lovász and Schrijver [M. Freedman, L. Lovász, A. Schrijver, Reflection positivity, rank connectivity, and homomorphisms of graphs, J. Amer. Math. Soc. 20 (2007) 37-51]. The conditions amount to the multiplicativity of f and to the positive semidefiniteness of certain matrices N(f,k).  相似文献   

4.
The odd‐girth of a graph is the length of a shortest odd circuit. A conjecture by Pavol Hell about circular coloring is solved in this article by showing that there is a function ƒ(ϵ) for each ϵ : 0 < ϵ < 1 such that, if the odd‐girth of a planar graph G is at least ƒ(ϵ), then G is (2 + ϵ)‐colorable. Note that the function ƒ(ϵ) is independent of the graph G and ϵ → 0 if and only if ƒ(ϵ) → ∞. A key lemma, called the folding lemma, is proved that provides a reduction method, which maintains the odd‐girth of planar graphs. This lemma is expected to have applications in related problems. © 2000 John Wiley & Sons, Inc. J Graph Theory 33: 109–119, 2000  相似文献   

5.
Circular-perfect graphs form a natural superclass of perfect graphs: on the one hand due to their definition by means of a more general coloring concept, on the other hand as an important class of χ-bound graphs with the smallest non-trivial χ-binding function χ(G)?ω(G)+1.The Strong Perfect Graph Conjecture, recently settled by Chudnovsky et al. [The strong perfect graph theorem, Ann. of Math. 164 (2006) 51-229], provides a characterization of perfect graphs by means of forbidden subgraphs. It is, therefore, natural to ask for an analogous conjecture for circular-perfect graphs, that is for a characterization of all minimal circular-imperfect graphs.At present, not many minimal circular-imperfect graphs are known. This paper studies the circular-(im)perfection of some families of graphs: normalized circular cliques, partitionable graphs, planar graphs, and complete joins. We thereby exhibit classes of minimal circular-imperfect graphs, namely, certain partitionable webs, a subclass of planar graphs, and odd wheels and odd antiwheels. As those classes appear to be very different from a structural point of view, we infer that formulating an appropriate conjecture for circular-perfect graphs, as analogue to the Strong Perfect Graph Theorem, seems to be difficult.  相似文献   

6.
Ying Liu  Yue Liu 《Discrete Mathematics》2009,309(13):4315-1643
Fielder [M. Fielder, Algebraic connectivity of graphs, Czechoslovak Math. J. 23 (1973) 298-305] has turned out that G is connected if and only if its algebraic connectivity a(G)>0. In 1998, Fallat and Kirkland [S.M. Fallat, S. Kirkland, Extremizing algebraic connectivity subject to graph theoretic constraints, Electron. J. Linear Algebra 3 (1998) 48-74] posed a conjecture: if G is a connected graph on n vertices with girth g≥3, then a(G)≥a(Cn,g) and that equality holds if and only if G is isomorphic to Cn,g. In 2007, Guo [J.M. Guo, A conjecture on the algebraic connectivity of connected graphs with fixed girth, Discrete Math. 308 (2008) 5702-5711] gave an affirmatively answer for the conjecture. In this paper, we determine the second and the third smallest algebraic connectivity among all unicyclic graphs with vertices.  相似文献   

7.
Let G be a simple connected graph with the vertex set V(G). The eccentric distance sum of G is defined as ξd(G)=vV(G)ε(v)DG(v), where ε(v) is the eccentricity of the vertex v and DG(v)=uV(G)d(u,v) is the sum of all distances from the vertex v. In this paper we characterize the extremal unicyclic graphs among n-vertex unicyclic graphs with given girth having the minimal and second minimal eccentric distance sum. In addition, we characterize the extremal trees with given diameter and minimal eccentric distance sum.  相似文献   

8.
9.
Acyclic edge colouring of planar graphs without short cycles   总被引:1,自引:0,他引:1  
Let G=(V,E) be any finite graph. A mapping C:E→[k] is called an acyclic edgek-colouring of G, if any two adjacent edges have different colours and there are no bichromatic cycles in G. In other words, for every pair of distinct colours i and j, the subgraph induced in G by all the edges which have colour i or j, is acyclic. The smallest number k of colours, such that G has an acyclic edge k-colouring is called the acyclic chromatic index of G, denoted by .In 2001, Alon et al. conjectured that for any graph G it holds that ; here Δ(G) stands for the maximum degree of G.In this paper we prove this conjecture for planar graphs with girth at least 5 and for planar graphs not containing cycles of length 4,6,8 and 9. We also show that if G is planar with girth at least 6. Moreover, we find an upper bound for the acyclic chromatic index of planar graphs without cycles of length 4. Namely, we prove that if G is such a graph, then .  相似文献   

10.
An even factor of a graph is a spanning subgraph of G in which all degrees are even, positive integers. In this paper, we characterize the claw-free graphs having even factors and then prove that the n-iterated line graph Ln(G) of G has an even factor if and only if every end branch of G has length at most n and every odd branch-bond of G has a branch of length at most n+1.  相似文献   

11.
For a graph G=(V(G),E(G)), a strong edge coloring of G is an edge coloring in which every color class is an induced matching. The strong chromatic index of G, χs(G), is the smallest number of colors in a strong edge coloring of G. The strong chromatic index of the random graph G(n,p) was considered in Discrete Math. 281 (2004) 129, Austral. J. Combin. 10 (1994) 97, Austral. J. Combin. 18 (1998) 219 and Combin. Probab. Comput. 11 (1) (2002) 103. In this paper, we consider χs(G) for a related class of graphs G known as uniform or ε-regular graphs. In particular, we prove that for 0<ε?d<1, all (d,ε)-regular bipartite graphs G=(UV,E) with |U|=|V|?n0(d,ε) satisfy χs(G)?ζ(ε)Δ(G)2, where ζ(ε)→0 as ε→0 (this order of magnitude is easily seen to be best possible). Our main tool in proving this statement is a powerful packing result of Pippenger and Spencer (Combin. Theory Ser. A 51(1) (1989) 24).  相似文献   

12.
Acyclic chromatic indices of planar graphs with large girth   总被引:1,自引:0,他引:1  
An acyclic edge coloring of a graph G is a proper edge coloring such that no bichromatic cycles are produced. The acyclic chromatic index a(G) of G is the smallest k such that G has an acyclic edge coloring using k colors.In this paper, we prove that every planar graph G with girth g(G) and maximum degree Δ has a(G)=Δ if there exists a pair (k,m)∈{(3,11),(4,8),(5,7),(8,6)} such that G satisfies Δk and g(G)≥m.  相似文献   

13.
The square G2 of a graph G is the graph with the same vertex set G and with two vertices adjacent if their distance in G is at most 2. Thomassen showed that every planar graph G with maximum degree Δ(G) = 3 satisfies χ(G2) ≤ 7. Kostochka and Woodall conjectured that for every graph, the list‐chromatic number of G2 equals the chromatic number of G2, that is, χl(G2) = χ(G2) for all G. If true, this conjecture (together with Thomassen's result) implies that every planar graph G with Δ(G) = 3 satisfies χl(G2) ≤ 7. We prove that every connected graph (not necessarily planar) with Δ(G) = 3 other than the Petersen graph satisfies χl(G2) ≤8 (and this is best possible). In addition, we show that if G is a planar graph with Δ(G) = 3 and girth g(G) ≥ 7, then χl(G2) ≤ 7. Dvo?ák, ?krekovski, and Tancer showed that if G is a planar graph with Δ(G) = 3 and girth g(G) ≥ 10, then χl(G2) ≤6. We improve the girth bound to show that if G is a planar graph with Δ(G) = 3 and g(G) ≥ 9, then χl(G2) ≤ 6. All of our proofs can be easily translated into linear‐time coloring algorithms. © 2007 Wiley Periodicals, Inc. J Graph Theory 57: 65–87, 2008  相似文献   

14.
Let G be a mixed graph and let L(G) be the Laplacian matrix of the graph G. The first eigenvalue and the first eigenvectors of G are respectively referred to the least nonzero eigenvalue and the corresponding eigenvectors of L(G). In this paper we focus on the properties of the first eigenvalue and the first eigenvectors of a nonsingular unicyclic mixed graph (abbreviated to a NUM graph). We introduce the notion of characteristic set associated with the first eigenvectors, and then obtain some results on the sign structure of the first eigenvectors. By these results we determine the unique graph which minimizes the first eigenvalue over all NUM graphs of fixed order and fixed girth, and the unique graph which minimizes the first eigenvalue over all NUM graphs of fixed order.  相似文献   

15.
We consider the existence of Hamiltonian cycles for the locally connected graphs with a bounded vertex degree. For a graph G, let Δ(G) and δ(G) denote the maximum and minimum vertex degrees, respectively. We explicitly describe all connected, locally connected graphs with Δ(G)?4. We show that every connected, locally connected graph with Δ(G)=5 and δ(G)?3 is fully cycle extendable which extends the results of Kikust [P.B. Kikust, The existence of the Hamiltonian circuit in a regular graph of degree 5, Latvian Math. Annual 16 (1975) 33-38] and Hendry [G.R.T. Hendry, A strengthening of Kikust’s theorem, J. Graph Theory 13 (1989) 257-260] on full cycle extendability of the connected, locally connected graphs with the maximum vertex degree bounded by 5. Furthermore, we prove that problem Hamilton Cycle for the locally connected graphs with Δ(G)?7 is NP-complete.  相似文献   

16.
The pebbling number of a graph G, f(G), is the least n such that, no matter how n pebbles are placed on the vertices of G, we can move a pebble to any vertex by a sequence of pebbling moves, each move taking two pebbles off one vertex and placing one on an adjacent vertex. Let p1,p2,…,pn be positive integers and G be such a graph, V(G)=n. The thorn graph of the graph G, with parameters p1,p2,…,pn, is obtained by attaching pi new vertices of degree 1 to the vertex ui of the graph G, i=1,2,…,n. Graham conjectured that for any connected graphs G and H, f(G×H)≤f(G)f(H). We show that Graham’s conjecture holds true for a thorn graph of the complete graph with every by a graph with the two-pebbling property. As a corollary, Graham’s conjecture holds when G and H are the thorn graphs of the complete graphs with every .  相似文献   

17.
Practical questions arising from (for instance) biological applications can often be expressed as classical optimization problems with specific, new features. We are interested here in the version of the maximum weight matching problem (on a graph G) obtained by (1) defining a set F of pairs of incompatible edges of G and (2) asking that the matching contains at most one edge in each given pair. Such a matching is called an odd matching. The graph T(F)=(VF,F), where VF is the set of edges of G occurring in at least one pair of F, is called the trace-graph of G and F.We motivate the introduction of the maximum weight odd-matching (abbreviated as Odd-MWM) problem and study its complexity with respect to two parameters: the type of graph G and the graph class T to which T(F) belongs.Our contribution includes:
A proof that Odd-MWM is NP-complete for 3-degree bipartite graphs when T(F) is a matching (i.e. when T is the class of 1-regular graphs), even if the weight function is constant.
A proof that Odd-MWM is NP-complete (for 3-degree bipartite graphs as well as for any larger class) if and only if T is a class of graphs with unbounded induced matching. Otherwise, Odd-MWM is polynomial.
A (Δ(T(F))+1)-approximate algorithm for Odd-MWM on general graphs. This algorithm becomes a χ(T(F))-approximate algorithm when the graph class T admits a polynomial algorithm for minimum vertex coloring.
  相似文献   

18.
Let G = (V, E) be a finite, simple and undirected graph with p vertices and q edges. An (a, d)-vertex-antimagic total labeling of G is a bijection f from V (G) ∪ E(G) onto the set of consecutive integers 1, 2, . . . , p + q, such that the vertex-weights form an arithmetic progression with the initial term a and difference d, where the vertex-weight of x is the sum of the value f (x) assigned to the vertex x together with all values f (xy) assigned to edges xy incident to x. Such labeling is called super if the smallest possible labels appear on the vertices. In this paper, we study the properties of such labelings and examine their existence for 2r-regular graphs when the difference d is 0, 1, . . . , r + 1.  相似文献   

19.
The spectral spread of a graph is defined to be the difference between the largest and the least eigenvalue of the adjacency matrix of the graph. A graph G is said to be bicyclic, if G is connected and |E(G)| = |V(G)|+ 1. Let B(n, g) be the set of bicyclic graphs on n vertices with girth g. In this paper some properties about the least eigenvalues of graphs are given, by which the unique graph with maximal spectral spread in B(n, g) is determined.  相似文献   

20.
For a signed graph G and function , a signed f‐factor of G is a spanning subgraph F such that sdegF(υ) = f(υ) for every vertex υ of G, where sdeg(υ) is the number of positive edges incident with v less the number of negative edges incident with υ, with loops counting twice in either case. For a given vertex‐function f, we provide necessary and sufficient conditions for a signed graph G to have a signed f‐factor. As a consequence of this result, an Erd?s‐Gallai‐type result is given for a sequence of integers to be the degree sequence of a signed r‐graph, the graph with at most r positive and r negative edges between a given pair of distinct vertices. We discuss how the theory can be altered when mixed edges (i.e., edges with one positive and one negative end) are allowed, and how it applies to bidirected graphs. © 2006 Wiley Periodicals, Inc. J Graph Theory 52: 27–36, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号