首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Let be the signed edge domination number of G. In 2006, Xu conjectured that: for any 2-connected graph G of order n(n≥2), . In this article we show that this conjecture is not true. More precisely, we show that for any positive integer m, there exists an m-connected graph G such that . Also for every two natural numbers m and n, we determine , where Km,n is the complete bipartite graph with part sizes m and n.  相似文献   

2.
A (d,1)-total labelling of a graph G assigns integers to the vertices and edges of G such that adjacent vertices receive distinct labels, adjacent edges receive distinct labels, and a vertex and its incident edges receive labels that differ in absolute value by at least d. The span of a (d,1)-total labelling is the maximum difference between two labels. The (d,1)-total number, denoted , is defined to be the least span among all (d,1)-total labellings of G. We prove new upper bounds for , compute some for complete bipartite graphs Km,n, and completely determine all for d=1,2,3. We also propose a conjecture on an upper bound for in terms of the chromatic number and the chromatic index of G.  相似文献   

3.
This paper studies the game chromatic number and game colouring number of the square of graphs. In particular, we prove that if G is a forest of maximum degree Δ≥9, then , and there are forests G with . It is also proved that for an outerplanar graph G of maximum degree Δ, , and for a planar graph G of maximum degree Δ, .  相似文献   

4.
A nonincreasing sequence of nonnegative integers π=(d1,d2,…,dn) is graphic if there is a (simple) graph G of order n having degree sequence π. In this case, G is said to realizeπ. For a given graph H, a graphic sequence π is potentiallyH-graphic if there is some realization of π containing H as a (weak) subgraph. Let σ(π) denote the sum of the terms of π. For a graph H and nZ+, σ(H,n) is defined as the smallest even integer m so that every n-term graphic sequence π with σ(π)≥m is potentially H-graphic. Let denote the complete t partite graph such that each partite set has exactly s vertices. We show that and obtain the exact value of σ(Kj+Ks,s,n) for n sufficiently large. Consequently, we obtain the exact value of for n sufficiently large.  相似文献   

5.
The automorphism group and outer automorphism group of a free group Fn of rank n act on the abelianized group H of Fn and the dual group H* of H. The twisted first homology groups of and with coefficients in H and H* are calculated.  相似文献   

6.
A graph X, with a subgroup G of the automorphism group of X, is said to be (G,s)-transitive, for some s≥1, if G is transitive on s-arcs but not on (s+1)-arcs, and s-transitive if it is -transitive. Let X be a connected (G,s)-transitive graph, and Gv the stabilizer of a vertex vV(X) in G. If X has valency 5 and Gv is solvable, Weiss [R.M. Weiss, An application of p-factorization methods to symmetric graphs, Math. Proc. Camb. Phil. Soc. 85 (1979) 43-48] proved that s≤3, and in this paper we prove that Gv is isomorphic to the cyclic group Z5, the dihedral group D10 or the dihedral group D20 for s=1, the Frobenius group F20 or F20×Z2 for s=2, or F20×Z4 for s=3. Furthermore, it is shown that for a connected 1-transitive Cayley graph of valency 5 on a non-abelian simple group G, the automorphism group of is the semidirect product , where R(G) is the right regular representation of G and .  相似文献   

7.
Let G=(V,E) be a finite, simple and undirected graph. For SV, let δ(S,G)={(u,v)∈E:uS and vVS} be the edge boundary of S. Given an integer i, 1≤i≤|V|, let the edge isoperimetric value of G at i be defined as be(i,G)=minSV;|S|=i|δ(S,G)|. The edge isoperimetric peak of G is defined as be(G)=max1≤j≤|V|be(j,G). Let bv(G) denote the vertex isoperimetric peak defined in a corresponding way. The problem of determining a lower bound for the vertex isoperimetric peak in complete t-ary trees was recently considered in [Y. Otachi, K. Yamazaki, A lower bound for the vertex boundary-width of complete k-ary trees, Discrete Mathematics, in press (doi:10.1016/j.disc.2007.05.014)]. In this paper we provide bounds which improve those in the above cited paper. Our results can be generalized to arbitrary (rooted) trees.The depth d of a tree is the number of nodes on the longest path starting from the root and ending at a leaf. In this paper we show that for a complete binary tree of depth d (denoted as ), and where c1, c2 are constants. For a complete t-ary tree of depth d (denoted as ) and dclogt where c is a constant, we show that and where c1, c2 are constants. At the heart of our proof we have the following theorem which works for an arbitrary rooted tree and not just for a complete t-ary tree. Let T=(V,E,r) be a finite, connected and rooted tree — the root being the vertex r. Define a weight function w:VN where the weight w(u) of a vertex u is the number of its successors (including itself) and let the weight index η(T) be defined as the number of distinct weights in the tree, i.e η(T)=|{w(u):uV}|. For a positive integer k, let ?(k)=|{iN:1≤i≤|V|,be(i,G)≤k}|. We show that .  相似文献   

8.
The existence of graph designs for the two nonisomorphic graphs on five vertices and eight edges is determined in the case of index one, with three possible exceptions in total. It is established that for the unique graph with vertex sequence (3, 3, 3, 3, 4), a graph design of order n exists exactly when and n≠16, with the possible exception of n=48. For the unique graph with vertex sequence (2,3,3,4,4), a graph design of order n exists exactly when , with the possible exceptions of n∈{32,48}.  相似文献   

9.
For an integer n and a prime p, let . In this paper, we present a construction for vertex-transitive self-complementary k-uniform hypergraphs of order n for each integer n such that for every prime p, where ?=max{k(2),(k−1)(2)}, and consequently we prove that the necessary conditions on the order of vertex-transitive self-complementary uniform hypergraphs of rank k=2? or k=2?+1 due to Potoňick and Šajna are sufficient. In addition, we use Burnside’s characterization of transitive groups of prime degree to characterize the structure of vertex-transitive self-complementary k-hypergraphs which have prime order p in the case where k=2? or k=2?+1 and , and we present an algorithm to generate all of these structures. We obtain a bound on the number of distinct vertex-transitive self-complementary graphs of prime order , up to isomorphism.  相似文献   

10.
An r-graph is a loopless undirected graph in which no two vertices are joined by more than r edges. An r-complete graph on m+1 vertices, denoted by , is an r-graph on m+1 vertices in which each pair of vertices is joined by exactly r edges. A non-increasing sequence π=(d1,d2,…,dn) of nonnegative integers is r-graphic if it is realizable by an r-graph on n vertices. Let be the smallest even integer such that each n-term r-graphic sequence with term sum of at least is realizable by an r-graph containing as a subgraph. In this paper, we determine the value of for sufficiently large n, which generalizes a conjecture due to Erd?s, Jacobson and Lehel.  相似文献   

11.
Let f be a graph function which assigns to each graph H a non-negative integer f(H)≤|V(H)|. The f-game chromatic number of a graph G is defined through a two-person game. Let X be a set of colours. Two players, Alice and Bob, take turns colouring the vertices of G with colours from X. A partial colouring c of G is legal (with respect to graph function f) if for any subgraph H of G, the sum of the number of colours used in H and the number of uncoloured vertices of H is at least f(H). Both Alice and Bob must colour legally (i.e., the partial colouring produced needs to be legal). The game ends if either all the vertices are coloured or there are uncoloured vertices with no legal colour. In the former case, Alice wins the game. In the latter case, Bob wins the game. The f-game chromatic number of G, χg(f,G), is the least number of colours that the colour set X needs to contain so that Alice has a winning strategy. Let be the graph function defined as , for any n≥3 and otherwise. Then is called the acyclic game chromatic number of G. In this paper, we prove that any outerplanar graph G has acyclic game chromatic number at most 7. For any integer k, let ?k be the graph function defined as ?k(K2)=2 and ?k(Pk)=3 (Pk is the path on k vertices) and ?k(H)=0 otherwise. This paper proves that if k≥8 then for any tree T, χg(?k,T)≤9. On the other hand, if k≤6, then for any integer n, there is a tree T such that χg(?k,T)≥n.  相似文献   

12.
Given a graph G, we construct an auxiliary graph with vertices such that the set of all stable sets of is in one-to-one correspondence with the set of all colorings of G. Then, we show that the Max-Coloring problem in G reduces to the Maximum Weighted Stable set problem in .  相似文献   

13.
A pair of sequences such that and
  相似文献   

14.
Let Ω be a measurable subset of a compact group G of positive Haar measure. Let be a non-negative function defined on the dual space and let L2(μ) be the corresponding Hilbert space which consists of elements (ξπ)π∈suppμ satisfying , where ξπ is a linear operator on the representation space of π, and is equipped with the inner product: . We show that the Fourier transform gives an isometric isomorphism from L2(Ω) onto L2(μ) if and only if the restrictions to Ω of all matrix coordinate functions , π∈suppμ, constitute an orthonormal basis for L2(Ω). Finally compact connected Lie groups case is studied.  相似文献   

15.
We prove that an analytic function f on the unit ball B with Hadamard gaps, that is, (the homogeneous polynomial expansion of f) satisfying nk+1/nk?λ>1 for all kN, belongs to the space if and only if . Moreover, we show that the following asymptotic relation holds . Also we prove that limr→1(1-r2)αRfrp=0 if and only if . These results confirm two conjectures from the following recent paper [S. Stevi?, On Bloch-type functions with Hadamard gaps, Abstr. Appl. Anal. 2007 (2007) 8 pages (Article ID 39176)].  相似文献   

16.
It is proved that the Hörmander and spaces (Ω1Rn, Ω2Rm open sets, 1?p<∞, ki Beurling-Björck weights, k=k1k2) are isomorphic whereas the iterated spaces and are not if 1<pq<∞. A similar result for weighted Lp-spaces of entire analytic functions is also obtained. Finally a result on iterated Besov spaces is given: and are not isomorphic when 1<q≠2<∞.  相似文献   

17.
18.
19.
In this note we complete an investigation started by Erd?s in 1963 that aims to find the strongest possible conclusion from the hypothesis of Turán’s theorem in extremal graph theory.Let be the complete r-partite graph with parts of sizes s1≥2,s2,…,sr with an edge added to the first part. Letting tr(n) be the number of edges of the r-partite Turán graph of order n, we prove that:For all r≥2 and all sufficiently small c>0, every graph of sufficiently large order n with tr(n)+1 edges contains a .We also give a corresponding stability theorem and two supporting results of wider scope.  相似文献   

20.
Given a graph G, for an integer c∈{2,…,|V(G)|}, define λc(G)=min{|X|:XE(G),ω(GX)≥c}. For a graph G and for an integer c=1,2,…,|V(G)|−1, define,
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号