首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
吴磊 《分子催化》2013,27(2):138-144
采用浸渍法制备了混合氧化物NaPMoO/Ti-MCM-41(n)(n为载体钛硅比)催化剂,考察其在以H2O2为氧化剂的环己烯环氧化反应中的催化性能,并用XRD、UV-Vis、IR、N2吸附-脱附、XPS及H2-TPR等测试技术对催化剂进行表征.结果表明:NPMO/Ti-MCM-41(0.2)的环己烯转化率、环氧环己烷选择性及H2O2利用率达到最高,分别为27.50%、75.31%和78.31%.这归因于负载型NPMO中的MoO3还原能力得到提高;载体Ti-MCM-41中Ti物种进一步促进MoO3的还原能力,从而有利于其与双氧水形成过氧化物活性中间体,使催化性能和双氧水的利用率得到提高.其中负载后的载体Ti-MCM-41孔结构遭到破坏,形成无定形TiOx物种.  相似文献   

2.
The homogeneous dinuclear zinc catalyst going back to the work of Williams et al. is to date the most active catalyst for the copolymerisation of cyclohexene oxide and CO2 at one atmosphere of carbon dioxide. However, this catalyst shows no copolymer formation in the copolymerisation reaction of propylene oxide and carbon dioxide, instead only cyclic carbonate is found. This behaviour is known for many zinc‐based catalysts, although the reasons are still unidentified. Within our studies, we focus on the parameters that are responsible for this typical behaviour. A deactivation of the catalyst due to a reaction with propylene oxide turns out to be negligible. Furthermore, the catalyst still shows poly(cyclohexene carbonate) formation in the presence of cyclic propylene carbonate, but the catalyst activity is dramatically reduced. In terpolymerisation reactions of CO2 with different ratios of cyclohexene oxide to propylene oxide, no incorporation of propylene oxide can be detected, which can only be explained by a very fast back‐biting reaction. Kinetic investigations indicate a complex reaction network, which can be manifested by theoretical investigations. DFT calculations show that the ring strains of both epoxides are comparable and the kinetic barriers for the chain propagation even favour the poly(propylene carbonate) over the poly(cyclohexene carbonate) formation. Therefore, the crucial step in the copolymerisation of propylene oxide and carbon dioxide is the back‐biting reaction in the case of the studied zinc catalyst. The depolymerisation is several orders of magnitude faster for poly(propylene carbonate) than for poly(cyclohexene carbonate).  相似文献   

3.
Highly efficient and greener hydrogenation of benzene to cyclohexene is of great importance but is challenging.In this work,Ru/Ti O2 catalyst was prepared by a simple chemical-reduction method.The catalyst was characterized by transmission electron spectroscopy(TEM),X-ray powder diffraction(XRD),Fourier transform infrared spectroscopy(FTIR),X-ray photoelectron spectroscopy(XPS),and nitrogen adsorption-desorption techniques.It was shown that the Ru nanoparticles with average size of about 2.2 nm were dispersed uniformly on the surface of the Ti O2 support.The effect of a very small amount of Zn O in Na OH solution on the selectivity to cyclohexene was investigated under different conditions by using Ru/Ti O2 catalyst.It was found that the addition of a small amount of Zn O to the Na OH solution could effectively enhance the selectivity to cyclohexene and that the yield of cyclohexene could reach 41.5%.Control experiments revealed that the main reason for the enhancement of the selectivity to cyclohexene was the presence of Zn O in the form of Na2Zn(OH)4 in the alkaline solution,which effectively retarded the further hydrogenation of cyclohexene.A recycling experiment showed that the yield of cyclohexene was not obviously decreased after four reuses.  相似文献   

4.
The controlled decomposition of an Ru(0) organometallic precursor dispersed in 1-n-butyl-3-methylimidazolium hexafluorophosphate (BMI.PF(6)), tetrafluoroborate (BMI.BF(4)) or trifluoromethane sulfonate (BMI.CF(3)SO(3)) ionic liquids with H(2) represents a simple and efficient method for the generation of Ru(0) nanoparticles. TEM analysis of these nanoparticles shows the formation of superstructures with diameters of approximately 57 nm that contain dispersed Ru(0) nanoparticles with diameters of 2.6+/-0.4 nm. These nanoparticles dispersed in the ionic liquids are efficient multiphase catalysts for the hydrogenation of alkenes and benzene under mild reaction conditions (4 atm, 75 degrees C). The ternary diagram (benzene/cyclohexene/BMI.PF(6)) indicated a maximum of 1 % cyclohexene concentration in BMI.PF(6), which is attained with 4 % benzene in the ionic phase. This solubility difference in the ionic liquid can be used for the extraction of cyclohexene during benzene hydrogenation by Ru catalysts suspended in BMI.PF(6). Selectivities of up to 39 % in cyclohexene can be attained at very low benzene conversion. Although the maximum yield of 2 % in cyclohexene is too low for technical applications, it represents a rare example of partial hydrogenation of benzene by soluble transition-metal nanoparticles.  相似文献   

5.
Immobilisation of both palladium(II) meso-tetrakis(N-methyl-4-pyridyl)porphyrin (PdTMPyP4+) and iron(III) meso-tetrakis(2,6-dichlorophenyl)porphyrin (FeTDCPP+) in the same membrane of Nafion creates a new composite system, in which the photoexcited palladium complex induces the O2-mediated oxidation of cyclohexene to the corresponding allylic hydroperoxide and the iron porphyrin works as a catalyst for specific oxygenations of cyclohexene and cyclooctene. The role of PdTMPyP4+ is to induce the photoactivation of O2 with visible light (lambda > 500 nm) to generate singlet oxygen (1O2) by means of energy transfer from the excited triplet state. Consequently, the 1O2-mediated oxidation of cyclohexene to cyclohexenyl hydroperoxide can be realised with a selectivity greater than 90%. Spectroscopic and photophysical investigations show that the tetracationic palladium porphyrin is mainly fixed to the external part of the Nafion membrane, it is characterised by a triplet-state lifetime significantly higher than that in the solution phase. The monocationic FeTDCPP+ is able to diffuse into the anionic cavities of Nafion, where it works as a catalyst for O2-mediated autooxidation processes that are initiated by the photogenerated hydroperoxides. These processes continue in the dark for many hours giving cyclohex-2-en-1-ol and trans-cyclohexane-1,2-diol monoethyl ether as main oxidation products. The presence of this ether, indirectly, reveals the formation of cyclohexene epoxide which undergoes a nucleophilic attack by ethanol and epoxide opening because of the strong acidic environment inside Nafion. The good photocatalytic efficiency of the oxidation process is demonstrated by an overall quantum yield of 1.1, as well as by a turnover value of 4.7 x 10(3) with respect to the iron porphyrin. When cyclooctene is present as co-substrate, it also undergoes oxygenation. In contrast to what was observed for cyclohexene, cyclooctene epoxide can be accumulated in a significant amount. As far as the stability of the system is concerned, FeTDCPP+ undergoes about 1% degradation during the process, while the Nafion matrix can be utilised several times without observable modification.  相似文献   

6.
Well-defined Fe(II) isolated sites are obtained by reaction of diaryl-N,N'-diazadiene bis(neosilyl) iron (1) with an aerosil silica, SiO(2-(700)). This system can be used as a precursor for the catalytic oxidation of cyclohexene into cyclohexene oxide, cyclohexenol and cyclohexenone in the presence of H(2)O(2).  相似文献   

7.
La1−xSrxCoO3 (x=0, 0.1, 0.2, 0.3, 0.4) nanoparticles were prepared by spray-flame synthesis and applied in the liquid-phase oxidation of cyclohexene with molecular O2 as oxidant under mild conditions. The catalysts were systematically characterized by state-of-the-art techniques. With increasing Sr content, the concentration of surface oxygen vacancy defects increases, which is beneficial for cyclohexene oxidation, but the surface concentration of less active Co2+ was also increased. However, Co2+ cations have a superior activity towards peroxide decomposition, which also plays an important role in cyclohexene oxidation. A Sr doping of 20 at. % was found to be the optimum in terms of activity and product selectivity. The catalyst also showed excellent reusability over three catalytic runs; this can be attributed to its highly stable particle size and morphology. Kinetic investigations revealed first-order reaction kinetics for temperatures between 60 and 100 °C and an apparent activation energy of 68 kJ mol−1 for cyclohexene oxidation. Moreover, the reaction was not affected by the applied O2 pressure in the range from 10 to 20 bar. In situ attenuated total reflection infrared spectroscopy was used to monitor the conversion of cyclohexene and the formation of reaction products including the key intermediate cyclohex-2-ene-1-hydroperoxide; spin trap electron paramagnetic resonance spectroscopy provided strong evidence for a radical reaction pathway by identifying the cyclohexenyl alkoxyl radical.  相似文献   

8.
A New Reaction-controlled Phase-transfer Catalyst System   总被引:1,自引:0,他引:1  
A new reaction-controlled phase-transfer catalyst system was designed and synthesized.In this system, heteropolytungstate [C7H7N(CH3)3]9PW9O34 was used for catalytic epoxidation of cyclohexene with H2O2 as the oxidant. The conversion of H2O2 was 100% and the yield of cyclohexene oxide was 87.1% based on cyclohexene. Infrared spectra showed that both fresh catalyst and the recovered catalyst do have completely same absorption peak, indicating the structure of catalyst is very stability and can be recycled.  相似文献   

9.
用沉淀法制备了单金属纳米Ru(0)催化剂,考察了ZnSO4和La2O3作共修饰剂对该催化剂催化苯选择加氢制环己烯性能的影响,并用X射线衍射(XRD)、X射线荧光(XRF)光谱、X射线光电子能谱(XPS)、俄歇电子能谱(AES)、透射电镜(TEM)和N2物理吸附等手段对加氢前后催化剂进行了表征.结果表明,在ZnSO4存在下,随着添加碱性La2O3量的增加,ZnSO4水解生成的(Zn(OH)2)3(ZnSO4)(H2O)x(x=1,3)盐量增加,催化剂活性单调降低,环己烯选择性单调升高.当La2O3/Ru物质的量比为0.075时,Ru催化剂上苯转化率为77.6%,环己烯选择性和收率分别为75.2%和58.4%.且该催化体系具有良好的重复使用性能.传质计算结果表明,苯、环己烯和氢气的液-固扩散限制和孔内扩散限制都可忽略.因此,高环己烯选择性和收率的获得不能简单归结为物理效应,而与催化剂的结构和催化体系密切相关.根据实验结果,我们推测在化学吸附有(Zn(OH)2)3(ZnSO4)(H2O)x(x=1,3)盐的Ru(0)催化剂有两种活化苯的活性位:Ru0和Zn2+.因为Zn2+将部分电子转移给了Ru,Zn2+活化苯的能力比Ru0弱.同时由于Ru和Zn2+的原子半径接近,Zn2+可以覆盖一部分Ru0活性位,导致解离H2的Ru0活性位减少.这导致了Zn2+上活化的苯只能加氢生成环己烯和Ru(0)催化剂活性的降低.本文利用双活性位模型来解释Ru基催化剂上的苯加氢反应,并用Hückel分子轨道理论说明了该模型的合理性.  相似文献   

10.
Generation of high value polymers from carbon dioxide is of general technological interest given that CO2 is both inexpensive and relatively easy to handle on an industrial scale. Previous work on the use of CO2 as a comonomer has focused primarily on development of new catalysts, and the effects of conventional process variables such as temperature and concentration on the polymerization outcome have not been examined in great detail. Recently, we, as well as Darensbourg and colleagues, have shown that one can generate zinc-based catalysts for the polymerization of CO2 and cyclohexene oxide which produce over 400 grams of polymer per gram of metal. In this paper, we use a product of the reaction between zinc oxide and the fluorinated half-ester of maleic anhydride to generate copolymers of CO2 and cyclohexene oxide where CO2 is both reactant and sole solvent. In general, we found that the outcome of the polymerization depends greatly on the proximity to the ceiling temperature and the critical cyclohexene oxide concentration, and also on the phase behavior of the cyclohexene oxide-CO2 binary.  相似文献   

11.
RK Dean  LN Dawe  CM Kozak 《Inorganic chemistry》2012,51(16):9095-9103
A diamine-bis(phenolate) chromium(III) complex, {CrCl[O(2)NN'](BuBu)}(2) catalyzes the copolymerization of cyclohexene oxide with carbon dioxide. The synthesis of this metal complex is straightforward, and it can be obtained in high yields. This catalyst incorporates a tripodal amine-bis(phenolate) ligand, which differs from the salen or salan ligands typically used with Cr and Co complexes that have been employed as catalysts for the synthesis of such polycarbonates. The catalyst reported herein yields low molecular weight polymers with narrow polydispersities. Structural and spectroscopic details of this complex along with its copolymerization activity for cyclohexene oxide and carbon dioxide are presented.  相似文献   

12.
A series of iron(Ⅲ) chlorophyllins was prepared from silkworm excrement crude chlorophyll extract as a raw material. Aerobic oxidation of cyclohexene by using the prepared iron(Ⅲ) chlorophyllins as biomimetic catalysts was studied under atmospheric pressure in the absence of reducing agent and solvent. The results indicate that chlorophyll iron porphyrins have better catalytic performance than the industrial-applied iron tetraphenylporphyrin and cobalt tetraphenylporphyrin, and possess a higher selectivity for 2-cyclohexen-1-one. The smaller the polarity of iron(Ⅲ) chlorophyllin's ligand is, the easier the catalytic oxidation of cyclohexene will be. Esterification products of iron(Ⅲ) chlorophyllins can catalyze the oxidation of cyclohexene better than non-esterified iron(Ⅲ) chlorophyllins, and therefore show a higher conversion of cyclohexene and a higher selectivity for 2-cyclohexen-1-one than the non-esterified ones. Among the six synthesized iron(Ⅲ) chlorophyllin catalysts, iron(Ⅲ) methyl-pyropheophorbide-a is the best biomimetic catalyst for the highest conversion of cyclohexene. The influences of catalyst's substituent, polarity and ring structure on the catalytic performance were discussed. The catalytic performance of iron(Ⅲ) chlorophyllins improves with decreasing polarity, increasing conjugated degree of porphyrin's ring or enhancing chlorophyllins' stability. Possible mechanism of cyclohexene aerobic oxidation catalyzed by iron(Ⅲ) chlorophyllins was also discussed.  相似文献   

13.
环己烯可控选择性催化氧化的最新进展(英文)   总被引:2,自引:0,他引:2  
环己烯是一种价格低廉易得的大宗化工原料,通常由苯选择性加氢来合成.该化合物虽然分子结构简单,但却有两个不同的反应位点.随着反应所发生的位点与反应深度的不同,环己烯的氧化反应可生成一系列不同氧化程度与官能团的产物的混合物.环己烯双键的氧化反应,可生成环氧环己烷,而环氧环己烷进一步水解,则生成1,2-环己二醇,其中,随着使用不同催化剂导致的反应机理差异,产物可分别为顺式或反式结构.在强氧化剂作用下,环己烯双键充分氧化,可生成己二酸.环己烯烯丙基C-H键氧化,则可随着反应深度的不同分别生成2-环己烯醇与2-环己烯酮.上述环己烯氧化产物都是重要的有机化工中间体.其中,环氧环己烷是农药杀螨剂的主要原料,也用作合成表面活性剂、橡胶助剂等有用产品;1,2-环己二醇可用于合成化工中间体邻苯二酚;环己烯醇与环己烯酮是生产除草剂、香水、药物的原料;己二酸则是合成重要产品尼龙-6,6的原料.因此,随着市场需求的变化,对环己烯氧化反应进行选择性控制,提高其中某种产物的选择性,是重要的化工合成技术,有着巨大的应用潜力;从而控制反应历程与深度是有机化工合成工艺研究中最具有挑战性的研究课题之一,有很好的科学意义.目前,人们对环己烯的选择性控制氧化反应已进行了广泛的研究.该反应可使用金属催化剂,包括铁、钴、镍、锰、铬、钒、钨、铜、钛、金、银、铋、锇、钼、镉等;也可以使用无金属催化剂如磺酸、2,2,2-三氟苯乙酮、类石墨相碳化氮(g-C3N4)等.反应可使用化学氧化剂,如间氯过氧苯甲酸、醋酸碘苯、过氧叔丁醇等,也可使用更加清洁的过氧化氢、分子氧.研究表明,催化剂的种类、用量,以及反应溶剂、温度、氧化剂等一系列外在条件,可以影响环己烯氧化反应的选择性.本文以反应所使用的氧化剂归类,总结了该课题的最新研究进展,以期对从事环己烯可控选择性氧化的学术与工业研究人员有所帮助.  相似文献   

14.
研究了高分子担载水杨醛半胱氨酸希夫碱配合物(PS-Sal-Cys-M)催化氧化环己烯的性能,详细探讨了反应温度、反应时间、催化剂用量、反应添加剂对高分子担载水杨醛半胱氨酸希夫碱铜配合物催化氧化环己烯的反应性能的影响。研究表明,在常压下,用分子氧作作为氧化剂,不需要溶剂及共还原剂,环己烯可以被氧化生成环己烯醇和环己烯酮,产物的分离提纯比较容易,催化剂可以循环使用。  相似文献   

15.
1-Bromo-1-cyclopropyl-2-methyl-1-propene (7) does not react with cyclohexene and AgSbF6 with formation of the expected cycloadduct 9. The first generated cyclopropylvinyl-cation 8 rearranges to the allyl-cation 10 which after addition to the olefins cyclohexene and 2,3-dimethyl-2-butene (19) via unusual rearrangements gives the dienes 17 and 20 respectively.  相似文献   

16.
由CO2 氧化环己烯 (CHO)配位催化共聚制得高Tg 的脂肪族聚碳酸亚环己基酯 ,并用IR、NMR和DSC等进行了表征 ,用TG对聚合物的热稳定性进行分析 .加入环氧丙烷 (PO)三元共聚并分析PO/CHO摩尔比对Tg 的影响 .加入异氰酸苯酯有提高产物特性粘数的作用  相似文献   

17.
Polymer-bound Schiff-base ligand (PS-Sal-Cys) was prepared from the polystyrene-bound salicylaldehyde and L-cysteine, its complex (PS-Sal-Cys-Mn) was also synthesized. The polymer ligand and its complex were characterized by infrared spectra (IR), small area X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma-atomic emission spectro (ICP-AES). In the presence of complex, cyclohexane can be effectively oxidized by molecular oxygen without a reductant. The major products of the reaction are 2-cyclohexen-1-ol, 2-cyclohexen-1-one, and 2-cyclohexen-1-hydroperoxide, which is different from the typical oxidation of cyclohexene. The mechanism of cyclohexene oxidation is also discussed.  相似文献   

18.
以CO2和环氧环己烷(CHO)为原料合成的聚碳酸环己烯酯(PCHC),是一种新型可降解材料.本文对聚碳酸环己烯酯的合成、性能及应用研究进行了综述.  相似文献   

19.
Synthesis of melamine glyoxal resin involves a catalyst-free, one pot reaction between melamine and glyoxal in DMF. The synthesized resins have a similar morphological arrangement to that of layered materials as depicted by their XRD pattern and Raman spectra. The catalytic behavior of melamine glyoxal resin (MGR) have been studied in allylic oxidation of cyclohexene and simultaneous Michael addition. The MGR/solvent/O2 oxidant system can be regarded as a metal-free, additive-free, cost-effective and environmentally benign catalytic system. The oxidative behavior of MGR is attributed to its ability to generate in situ organic peroxide species during the course of reaction. Generation of peroxide species is confirmed by the KI/starch test and further confirmed by the complete suppression effect of TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) over oxidation. The activity for Michael addition can be attributed to the presence of a higher content of nitrogen atoms, which serves as the active site. In oxidation, 28.1% conversion of cyclohexene with 37.19 and 62.81% selectivities for cyclohexenol and cyclohexenone were observed, respectively. In consecutive oxidation and oxy-Michael addition, 31.5% conversion of cyclohexene was observed with selectivities of 61.6% for cyclohexenone and 38.4% for alkoxy product.  相似文献   

20.
在水/1-戊醇两相体系中实现了以温控配体Ph2P(CH2CH2O)22CH3为稳定剂的Rh纳米催化剂的温控相转移功能,并将其应用于烯烃催化加氢反应,在优化的反应条件下,环己烯的转化率和环己烷的收率均为99%.通过简单的相分离即可将催化剂从产物中分离出来,重复使用8次,其活性保持不变.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号