首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radionuclides of caesium are environmentally important since they are formed as significant high yield fission products (135Cs and 137Cs) and activation products (134Cs and 136Cs) during nuclear fission. They originate from a range of nuclear activities such as weapons testing, nuclear reprocessing and nuclear fuel cycle discharges and nuclear accidents. Whilst 137Cs, 134Cs and 136Cs are routinely measurable at high sensitivity by gamma spectrometry, routine detection of long-lived 135Cs by radiometric methods is challenging. This measurement is, however, important given its significance in long-term nuclear waste storage and disposal. Furthermore, the 135Cs/137Cs ratio varies with reactor, weapon and fuel type, and accurate measurement of this ratio can therefore be used as a forensic tool in identifying the source(s) of nuclear contamination. The shorter-lived activation products 134Cs and 136Cs have a limited application but provide useful early information on fuel irradiation history and have importance in health physics.  相似文献   

2.
Two sets of calibration standards for134Cs and137Cs were prepared by small serial dilution of a natural matrix standard reference material, IAEA-154 whey powder. The first set was intended to screen imported milk powders which were suspected to be contaminated with134Cs and137Cs. Therefore the concentration range of the calibration standards were about 40–400 Bq/kg. The precision of the preparation of the standard with about 7 Bq/kg of134Cs and 39 Bq/kg of137Cs at measurement time was 7.4% and 3.2%, respectively. The preparation of a similar standard by spiking the matrix with radioisotope solutions resulted in a poorer precision, about double that of the former technique. The other set of calibration standards was prepared to measure the environmental levels of137Cs in commercial Venezuelan milk powders. Their concentration ranged from 3–10 Bq/kg of137Cs. The accuracy of these calibration curves was checked by using IAEA-152 and A-14 milk powders. Their measured values were in good agreement with their certified values. Finally, it is shown that these preparation techniques by serial dilution of a standard reference material were simple, rapid, precise, accurate and cost-effective.This work was partly funded by a research contract PC-075 from the Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICIT).  相似文献   

3.
The concentration of the radionuclides103Ru,134Cs and137Cs in sewage sludge samples which were collected between July and September 1986, were measured by -ray spectrometry. High concentration of103Ru,134Cs and137Cs were found in sewage sludge samples from Lower-Austria /Scheibbs, Zwettl/ and Styria /Eisenerz, Leoben/. the radioactivity concentration of137Cs was two times higher than that of134Cs. Following concentration values were found:103Ru 0.1–63.0 nCi kg–1,134Cs 0.3–41.6 nCi kg–1, and137Cs 0.3–83.3 nCi kg–1. The activity of these nuclides decreased from July 1986 to September 1986.  相似文献   

4.
Cesium is a member of the Group I alkali metals, very reactive earth metals that react vigorously with both air and water. The chemistry of cesium is much like the chemistry of neighboring elements on the periodic table, potassium and rubidium. This close relation creates many problems in plant-life exposed to cesium because it is so easily confused for potassium, an essential nutrient to plants. Radioactive 134Cs and 137Cs are also chemically akin to potassium and stable cesium. Uptake of these radioactive isotopes from groundwater by plant-life destroys the plant-life and can potentially expose humans to the radioactive affects of 134Cs and 137Cs. Much experimental work has been focused on the separation of 137Cs from uranium fission products. In previous experimental work performed a column consisting of Kel-F supporting tetraphenylboron (TPB) was utilized to separate 137Cs from uranium fission products. It is of interest at this time to attempt the separation of 134Cs from 0.01M EDTA using the same method and Neoflon in the place of Kel-F as the inert support. The results of this experiment give a separation efficiency of 88% and show a linear relationship between the column bed length and the separation efficiency obtained.  相似文献   

5.
Daily intakes of 134Cs and 137Cs in Ukrainians were estimated in relation to the health effects on habitants after the Chernobyl accident. Two hundred and sixty-eight diet samples were collected from 25 oblasts (regions) using a duplicate portion method. For Ukrainians, the range and median daily intakes of 137Cs were 0.53–571 and 8.8 Bq per person, respectively. Intakes of 134Cs were also detected in highly 137Cs contaminated areas. Daily intakes of 134Cs were in the range of not detected to 3.6 Bq per person. Using the highest radiocesium intakes, annual effective doses for 134Cs and 137Cs were estimated to be 2.5·10−2 and 2.7 mSv, respectively.  相似文献   

6.
For source identification, measurement of 135Cs/137Cs atomic ratio not only provides information apart from the detection of 134Cs and 137Cs, but it can also overcome the application limit that measurement of the 134Cs/137Cs ratio has due to the short half-life of 134Cs (2.06 y). With the recent advancement of ICP-MS, it is necessary to improve the corresponding separation method for rapid and precise 135Cs/137Cs atomic ratio analysis. A novel separation and purification technique was developed for the new generation of triple-quadrupole inductively coupled plasma-mass spectrometry (ICP-MS/MS). The simple chemical separation, incorporating ammonium molybdophosphate selective adsorption of Cs and subsequent single cation-exchange chromatography, removes the majority of isobaric and polyatomic interference elements. Subsequently, the ICP-MS/MS removes residual interference elements and eliminates the peak tailing effect of stable 133Cs, at m/z 134, 135, and 137. The developed analytical method was successfully applied to measure 135Cs/137Cs atomic ratios and 135Cs activities in environmental samples (soil and sediment) for radiocesium source identification.  相似文献   

7.
For the disposal of the high efficiency particulate air (HEPA) glass filter to environment, the glass fiber should be leached to lower its radioactive concentration. To derive the optimum method for removal of Co and Cs from HEPA glass fiber, four methods were applied in this study. Results of electrochemical leaching of glass fiber by 4.0 M HNO3–0.1 M Ce(IV) solution showed that the removal efficiency of 134Cs, 137Cs, and 60Cs from glass fiber after 5 h was 96.4, 93.6, and 93.8%, respectively. Results by 5 wt% NaOH solution showed that the removal efficiency of 134Cs, 137Cs, and 60Cs after 30 h was 81.7, 82.1, and 10.0%, respectively. Results by repeat 2.0 M HNO3 solution showed that the removal efficiencies of 134Cs, 137Cs, and 60Cs after 2 h of three repetitions were 96.2, 99.4, and 99.1%, respectively. Finally, results by repeat 4.0 M HNO3 solution showed that the removal efficiencies of 134Cs, 137Cs, and 60Cs after 4 h of three repetitions were 100, 99.9, and 99.9%, respectively, and their radioactivities were below 0.1 Bq/g. Therefore, the chemical leaching method by 4.0 M HNO3 solution was considered as an optimum one for removal of cesium and cobalt from HEPA glass fiber for self disposal. Also the removal efficiencies of 60Co, 134Cs, and 137Cs from the waste-solution after its precipitation-filtration treatment for reuse of 4.0 M HNO3 waste-solution were 88.0, 95.0, and 99.8%.  相似文献   

8.
Radionuclides such as 131I, 134Cs, 137Cs, and 239,240Pu in Korean rainwater have been analyzed by Korea Research Institute of Standards and Science (KRISS) since the Fukushima nuclear power plant accident in March 2011 to investigate the activity level, distribution pattern, and temporal variation and to assess the radiation dose the public is exposed to. The concentration of 131I in the Korean rainwater samples varied between 0.033 (minimum detectable activity; MDA) and 1.30 Bq kg?1 and the concentrations tended to decrease exponentially with time. The concentrations of 134Cs and 137Cs in rainwater ranged from 0.01 to 334 ± 74 and 0.29 ± 0.01 to 276 ± 1 mBq kg?1, respectively. The mean activity ratio of 137Cs/134Cs in the rainwater samples collected from April 18 to May 12 was estimated to be 0.44 ± 0.21, and this value is lower than that (ca. 1) observed in Fukushima, Japan, when there was an escape from the nuclear reactors. When an attempt was made to analyze Pu isotopes in rainwater samples, no Pu isotopes were detected above the MDA in any of the rainwater samples. Although the locations investigated were different from Asia to Europe, the concentrations of 131I, 134Cs and 137Cs in the rainwater are comparable, which suggests a global contamination of 131I, 134Cs, and 137Cs occurred because of the Fukushima nuclear power plant accident.  相似文献   

9.
Impact of the TEPCO Fukushima-Daiichi NPP accident, FNPP1, to the North Pacific Ocean occurred through two pathways, namely direct release and atmospheric deposition to wide ocean surface. We collected more than 100 seawater samples in the North Pacific Ocean in April and May 2011 by seven commercial ships as VOS. Since the sample volume was 2 l each, we measured radiocaesium activity at Ogoya Underground Facility to obtain reliable activity. 137Cs was detected at all stations and 134Cs was detected at most of the stations in the North Pacific Ocean. The 137Cs activity ranged from around 1 to 1,000 Bq m?3 with activity ratios of 134Cs/137Cs close to 1 which is a signature of radiocaesium originated from the FNPP1 accident. At east of the International Date Line north of 40°N in the Pacific Ocean in April 2011, the 134Cs activity ranged from 2 to 12 Bq m?3.  相似文献   

10.
Results of forward and backward modeling of air mass transport from Fukushima Daiichi nuclear power plant to Slovakia were compared with aerosol radioactivity measurements. Several radionuclide maxima (131I, 134Cs and 137Cs) were observed in the Bratislava ground-level air in March–April 2011. The 131I/137Cs activity ratio records showed the presence of two different fresh air masses in the Bratislava air, supported by simulations of forward and backward trajectories between Fukushima and Bratislava.  相似文献   

11.
The evolution of Chernobyl103Ru,134Cs and137Cs in accumulated fallout is rigorously followed. The103Ru activity of about 12 kBq.m–2 in the middle of May 1986 became insignificant at the end of 1986, while the levels of134Cs and137Cs have changed during 3 years from 2.5 kBq.m–2, respectively, 5 kBq.m–2 to about 0.9 kBq.m–2, respectively 4.7 kBq.m–2 according to their proper half-lives.  相似文献   

12.
Reverse radiometric flow injection analysis was used for the simultaneous determination of60Co,131I and137Cs in model radioactive waste water. A NaI (Tl) scintillation detector coupled to a Canberra MCA was used for measuring the activity of137Cs at 662 keV,60Co at 1173 keV and 1332 keV, and131I at 364 keV.  相似文献   

13.
The half-life of134Cs obtained by gamma spectrometry from the change of the134Cs to137Cs activity ratio is 2.04±0.03 years.  相似文献   

14.
The aim of the investigation was to determine whether the 137Cs contamination found in plants around the Paks Nuclear Power Plant in Paks, Hungary was a result of local emission or of the earlier Chernobyl accident. We distinguished between the two possibilities on the basis of the 134Cs/137Cs ratio. The 134Cs activities to be measured were extremely low, in some cases undetectable with conventional evaluation softwares. Therefore a special algorithm was used to determine the 134Cs/137Cs ratio. On the basis of the results it is evident, that the contamination originated from Chernobyl.  相似文献   

15.
The distribution of134Cs,137Cs and214Am in surface and core sediments from areas in north Wales has been investigated. Coastal sites show a predominance of Sellafield-derived material for all three radionuclides whereas estuarine sites show an increased proportion of Chemobyl-derived caesium present. By the use of the134Cs/137Cs ratio, a mean proportion of Chemobyl-derived137Cs in surface sediments collected in 1991 fell from 34% at an estuarine site to 11% at a coastal site. In deeper sections of cores representing sedimentation dates near the Chemobyl accident, up to 90% of137Cs at the estuarine site and 26% at the coastal site can be attributed to Chemobyl. By using the position of the Chemobyl134Cs and137Cs peak in the cores, sedimentation rates of 0.7 mm·a–1 were calculated.  相似文献   

16.
Various samples from the south-east region of Roumania/greens, fodder, cheese/were analyzed for131I,134Cs and137Cs concentrations in May and July 1986 by -ray spectrometry. The concentrations are reported in nCi. kg–1 wet weight. For greens, a considerable decrease was observed for131I/to 3.0–7.0 nCi. kg–1/,134Cs/to 0.5–2.0 nCi.kg–1/ and137Cs /to 1.0–4.0 nCi. kg–1/ from the first half /5–15 May/ till the end of May 1986. For cheese, maximum values were measured between 5 and 15 May /sheep cottage cheese: 500–800 nCi.kg–1 for131I, 25–50 nCi. kg–1 for134Cs, 40–80 nCi. kg–1 for137Cs/; at the beginning of July a considerable decrease /to 5–10 nCi. kg–1 for131I, 1.2–2.0 nCi.kg–1 for134Cs, 2.2–3.0 nCi. kg–1 for137Cs/ was observed. In autumn 1986 a small increase up to 2.0–3.0 nCi. kg–1 for134Cs and 3.4–5.0 nCi. kg–1 for137Cs /in November/ was reported. The population's internal possible contamination was strongly limited by the authorities' severe control of the food-stuff.  相似文献   

17.
Studies of 137Cs distribution in East Malaysia were carried out as part of a marine coastal environment project. The results of measurements will serve as baseline data and background reference level for Malaysia coastline. Twenty-one locations were identified along the coastline of East Malaysia, and from each location water samples were collected at the surface of the seawater. Ten near-shore locations were also selected and seawater was collected at three different depths. Large volumes of seawater were collected and the co-precipitation technique was employed to concentrate cesium. A known amount of 134Cs tracer was added as yield determinant, followed by addition of copper(II) nitrate salt and a solution of potassium hexacyanoferrate(II) trihydrate, to precipitate the total cesium. The precipitate slurry was oven dried at 60 °C for 1–2 days, finely ground and counted using gamma-ray spectrometry. The activity of 137Cs was determined by measuring the peak area under the photopeak of the gamma-spectrum at 661 keV, which is equivalent to gamma-intensity corrected for detection efficiency, percentage of gamma-ray abundance of the radionuclide and recovery of 134Cs tracer. There were no significant differences of 137Cs activities both in surface and bottom water samples at 95% confidence level. The activity of 137Cs (for all samples) was found to be in the range of 1.47 to 3.36 Bq/m3 and 1.69 to 3.32 Bq/m3 for Sabah and Sarawak, respectively.  相似文献   

18.

Concentrations of 134+137Cs and 133Cs in aquatic macrophytes, water, and sediment were measured in samples collected from Fukushima Prefecture, Japan. The concentrations of 137Cs in submerged and floating-leaved plants were higher than the values for emergent plants according to their main Cs uptake mode. The geometric mean water-to-plant concentration ratio for 137Cs and 133Cs was comparable observed in submerged and floating-leaved plants, while the geometric mean sediment-to-plant concentration ratio for 137Cs in emergent plants was higher than that of 133Cs, which suggest that the mobility of Fukushima accident-derived 137Cs is not in steady state 4–5 years after the accident.

  相似文献   

19.
Rough techniques for pinpointing defective fuel pins during actual reactor operation were developed for nuclear power plants. These techniques are based on various fission product concentration ratios. Here, a new cesium concentration ratio,134Cs/136Cs, was tested in combination with the more usual cesium ratio134Cs/137Cs. This new cesium ratio confirmed the conclusions drawn from the ratio134Cs/137Cs and provided some additional information on the location of the defective fuel rods. Application of this second cesium ratio improves the reliability of the rough localization method.  相似文献   

20.
In the nuclear domain, precise and accurate isotopic composition determination of elements in spent nuclear fuels is mandatory to validate neutron calculation codes and for nuclear waste disposal. The present study presents the results obtained on Cs isotope ratio by mass spectrometric measurements. Natural cesium is monoisotopic (133Cs) whereas cesium in spent fuels has 4 isotopes (133Cs, 134Cs, 135Cs, and 137Cs). As no standard reference material is available to evaluate the accuracy of Cs isotopic measurements, a comparison of cesium isotopic composition in spent nuclear fuels has been performed between Thermal Ionization Mass Spectrometry (TIMS) and a new method involving Multiple Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS) measurements. For TIMS measurements, isotopic fractionation has been evaluated by studying the behavior of cesium isotope ratios (133Cs/137Cs and 135Cs/137Cs) during the analyses. For MC-ICPMS measurements, the mass bias effects have been corrected with an external mass bias correction using elements (Eu and Sb) close to cesium masses. The results obtained by the two techniques show good agreement: relative difference on 133Cs/137Cs and 135Cs/137Cs ratios for two nuclear samples, analyzed after chemical separation, ranges from 0.2% to 0.5% depending on the choice of reference value for mass bias correction by MC-ICPMS. Finally the quantification of the 135Cs/238U ratio by the isotope dilution technique is presented in the case of a MOx (mixed oxide) spent fuel sample. Evaluation of the global uncertainties shows that this ratio could be defined at an uncertainty of 0.5% (k = 2). The intercomparison between two independent mass spectrometric techniques is fundamental for the evaluation of uncertainty when no isotopic standard is available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号