首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the modified state-space self-tuning control (STC) via the observer/Kalman filter identification (OKID) method, an effective low-order tuner for fault-tolerant control of a class of unknown nonlinear stochastic sampled-data systems is proposed in this paper. The OKID method is a time-domain technique that identifies a discrete input–output map by using known input–output sampled data in the general coordinate form, through an extension of the eigensystem realization algorithm (ERA). Then, the above identified model in a general coordinate form is transformed to an observer form to provide a computationally effective initialization for a low-order on-line “auto-regressive moving average process with exogenous (ARMAX) model”-based identification. Furthermore, the proposed approach uses a modified Kalman filter estimate algorithm and the current-output-based observer to repair the drawback of the system multiple failures. Thus, the fault-tolerant control (FTC) performance can be significantly improved. As a result, a low-order state-space self-tuning control (STC) is constructed. Finally, the method is applied for a three-tank system with various faults to demonstrate the effectiveness of the proposed methodology.  相似文献   

2.
《Applied Mathematical Modelling》2014,38(5-6):1753-1774
An active fault tolerant control (FTC) scheme is proposed in this paper to accommodate for an industrial steam turbine faults based on integration of a data-driven fault detection and diagnosis (FDD) module and an adaptive generalized predictive control (GPC) approach. The FDD module uses a fusion-based methodology to incorporate a multi-attribute feature via a support vector machine (SVM) and adaptive neuro-fuzzy inference system (ANFIS) classifiers. In the GPC formulation, an adaptive configuration of its internal model has been devised to capture the faulty model for the set of internal steam turbine faults. To handle the most challenging faults, however, the GPC control configuration is modified via its weighting factors to demand for satisfactory control recovery with less vigorous control actions. The proposed FTC scheme is hence able to systematically maintain early FDD with efficient fault accommodation against faults jeopardizing the steam turbine availability. Extensive simulation tests are conducted to explore the effectiveness of the proposed FTC performances in response to different categories of steam turbine fault scenarios.  相似文献   

3.
4.
This work proposes the command tracking problem for uncertain Euler–Lagrange (EL) systems with multiple partial loss of effectiveness (PLOE) actuator faults. Compared to existing fault-tolerant controllers for EL systems, the proposed adaptive controller accounts for parametric uncertainties in the system and multiple time-varying actuator fault parameters. The proposed method can also handle an infinite number of fault cases. The closed-loop fault-tolerant system is treated as a switched dynamical system, and a switched system stability is established using multiple Lyapunov functions. It is shown that all signals are bounded in each sub-interval and at the switching instances, and asymptotic tracking can be obtained only for a finite number of fault occurrences, whereas tracking error is bounded for the infinite case. Finally, a simulation example on a robotic manipulator is presented to show the effectiveness of the proposed method.  相似文献   

5.
A new diagnostic method for hierarchically structured discrete-event systems is presented. The efficiency of this method results from the fact that the complexity of the diagnostic task is reduced by first detecting a faulty component using a coarse process model on a high level of abstraction, and subsequently refining the result by investigating the faulty component with the help of a detailed component model in order to identify the fault with sufficient precision. On both abstraction levels, the method uses a timed discrete-event model of the appropriate part of the system. On the higher abstraction level a timed event graph is used that describes how the temporal distance of the events is changed by component faults. On the lower level of abstraction, timed automata are used to cope with the non-determinism of the event sequence generated by the faulty and faultless components. The approach is illustrated by the diagnosis of a batch process.  相似文献   

6.
针对状态具有多个时滞的线性不确定性系统,基于李雅普诺夫稳定性理论,矩阵不等式及线性矩阵不等式方法,设计带有多个时滞记忆的输出反馈鲁棒H∞容错控制器.研究了在执行器发生故障的情况下,多时滞不确定性系统的鲁棒H∞容错控制的问题.首先给出了多个时滞记忆的输出反馈鲁棒H∞容错控制器的综合分析,进一步给出参数不确定项的多时滞系统的渐近稳定的充分条件,以及满足给定性能指标鲁棒H∞容错控制器的设计方法.仿真结果证明了该方法的有效性和可行性.  相似文献   

7.
CONNECTIVITYOFCARTESIANPRODUCTDIGRAPHSANDFAULT┐TOLERANTROUTINGSOFGENERALIZEDHYPERCUBEXUJUNMINGAbstract.Inthispaper,theproblem...  相似文献   

8.
In this paper, a new method of fault isolation and identification based on parameter intervals for nonlinear dynamic systems is proposed. The practical domain of the value of each system parameter is divided into a certain number of intervals. After verifying all the intervals whether or not one of them contains the faulty parameter value of the system, the faulty parameter value is found, the fault is therefore isolated. The method provides the estimation of the faulty parameter value and its bounds when the fault is isolated. It fits many kinds of nonlinear dynamic systems with ideal isolation and identification speed. The performances of the proposed method are illustrated by the simulation results of a fermentation process.  相似文献   

9.
One of the challenging problems for software companies is to find the optimal time of release of the software so as to minimize the total cost expended on testing and potential penalty cost due to unresolved faults. If the software is for a safety critical system, then the software release time becomes more important. The criticality of a failure caused by a fault also becomes an important issue for safety critical software. In this paper we develop a total cost model based on criticality of the fault and cost of its occurrence during different phases of development for N-version programming scheme, a popular fault-tolerant architecture. The mathematical model is developed using the reliability growth model based on the non-homogeneous Poisson process. The models for optimal release time under different constraints are developed under the assumption that the debugging is imperfect and there is a penalty for late release of the software. The concept of Failure Mode Effects and Criticality Analysis is used for measuring criticality.  相似文献   

10.
Fault detection and diagnosis (FDD) is an effective technology to assure the safety and reliability of quadrotor helicopters. However, there are still some unsolved problems in the existing FDD methods, such as the trade-offs between the accuracy and complexity of system models used for FDD, and the rarely explored structure faults in quadrotor helicopters. In this paper, a double-granularity FDD method is proposed based on the hybrid modeling of a quadrotor helicopter which has been developed in authors’ previous work. The hybrid model consists of a prior model and a set of non-parametric models. The coarse-granularity-level FDD is built on the prior model which can isolate the faulty channel(s); while the fine-granularity-level FDD is built on the nonparametric models which can isolate the faulty components in the faulty channel. In both coarse and fine granularity FDD procedures, principal component analysis (PCA) is adopted for online fault detection. Using such a double-granularity scheme, the proposed FDD method has inherent ability in detecting and diagnosing structure faults or failures in quadrotor helicopters. Experimental results conducted on a 3-DOF hover platform can demonstrate the feasibility and effectiveness of the proposed hybrid modeling technique and the hybrid model based FDD method.  相似文献   

11.
立方体网络路由选择算法   总被引:3,自引:1,他引:2  
本文利用图论理论 ,基于路由选择能力的概念 ,建立了一个有效的路由选择算法 ,该算法可以在含有节点故障和边故障的容错超立方体上使用 ,且具有较强的容错性 .  相似文献   

12.
The goal in many fault detection and isolation schemes is to increase the isolation and identification speed. This paper, presents a new approach of a nonlinear model based adaptive observer method, for detection, isolation and identification of actuator and sensor faults. Firstly, we will design a new method for the actuator fault problem where, after the fault detection and before the fault isolation, we will try to estimate the output of the instrument. The method is based on the formation of nonlinear observer banks where each bank isolates each actuator fault. Secondly, for the sensor problem we will reformulate the system by introducing a new state variable, so that an augmented system can be constructed to treat sensor faults as actuator faults. A method based on the design of an adaptive observers’ bank will be used for the fault treatment. These approaches use the system model and the outputs of the adaptive observers to generate residues. Residuals are defined in such way to isolate the faulty instrument after detecting the fault occurrence. The advantages of these methods are that we can treat not only single actuator and sensor faults but also multiple faults, more over the isolation time has been decreased. In this study, we consider that only abrupt faults in the system can occur. The validity of the methods will be tested firstly in simulation by using a nonlinear model of waste water treatment process with and without measurement noise and secondly with the same nonlinear model but by using this time real data.  相似文献   

13.
We consider problems of fault diagnosis in multiprocessor systems. Preparata, Metze and Chien [F.P. Preparata, G. Metze, R.T. Chien, On the connection assignment problem of diagnosable systems, IEEE Trans. Comput. EC 16 (12) (1967) 848-854] introduced a graph theoretical model for system-level diagnosis, in which processors perform tests on one another via links in the system. Fault-free processors correctly identify the status of tested processors, while the faulty processors can give arbitrary test results. The goal is to identify faulty processors based on the test results. A system is said to be t-diagnosable if faulty units can be identified, provided the number of faulty units present does not exceed t. We explore here diagnosis problems for n-cube systems and give bounds for diagnosability of the n-cube. We also describe a simple diagnosis algorithm A which is linear in time and which can be used for sequential diagnosis as well as for incomplete diagnosis in one step. In particular, the algorithm applied to arbitrary topology based interconnection systems G with N processors improves previously known ones. It has sequential diagnosability , which is optimal in the worst case.  相似文献   

14.
In a graph theoretical model of the spread of fault in distributed computing and communication networks, each element in the network is represented by a vertex of a graph where edges connect pairs of communicating elements, and each colored vertex corresponds to a faulty element at discrete time periods. Majority-based systems have been used to model the spread of fault to a certain vertex by checking for faults within a majority of its neighbors. Our focus is on irreversible majority processes wherein a vertex becomes permanently colored in a certain time period if at least half of its neighbors were in the colored state in the previous time period. We study such processes on planar, cylindrical, and toroidal triangular grid graphs. More specifically, we provide bounds for the minimum number of vertices in a dynamic monopoly defined as a set of vertices that, if initially colored, will result in the entire graph becoming colored in a finite number of time periods.  相似文献   

15.
A fault-tolerant routing algorithm has been developed for star graph interconnection topology by using a depth-first search strategy. The proposed algorithm routes a message from the source to the destination along an optimal path with a very high probability and is guaranteed to trace a path as long as the source and the destination are not disconnected. We derive exact mathematical expressions for the probabilities that the algorithm will compute an optimal path for a given number of faulty links in the network. The analysis reveals many interesting topological properties of the star graphs.  相似文献   

16.
This paper investigates the problem of dynamic output feedback fault tolerant controller design for discrete-time switched systems with actuator fault. By using reduced-order observer method and switched Lyapunov function technique, a fault estimation algorithm is achieved for the discrete-time switched system with actuator fault. Then based on the obtained online fault estimation information, a switched dynamic output feedback fault tolerant controller is employed to compensate for the effect of faults by stabilizing the closed-loop systems. Finally, an example is proposed to illustrate the obtained results.  相似文献   

17.
The k-out-of-N structure is a popular type of redundancy in fault-tolerant systems with wide applications in computer and communication systems, and power transmission and distribution systems, among others, during the past several decades. In this paper, our interest is in such a reliability system with identical, repairable components having exponential life times, in which at least k out of N components are needed for the system to perform its functions. There is a single repairman who attends to failed components on a first-come-first-served basis. The repair times are assumed to be of phase type. The system has K spares which can be tapped to extend the lifetime of the system using a probabilistic rule. We assume that the delivery time of a spare is exponentially distributed and there could be multiple requests for spares at any given time. Our main goal is to study the influence of delivery times on the performance measures of the k-out-of-N reliability system. To that end, the system is analyzed using a finite quasi-birth-and-death process and some interesting results are obtained.  相似文献   

18.
The use of detecting arrays (DTAs) is motivated by the need to locate and detect interaction faults arising between the factors in a component-based system in software testing. The optimality and construction of DTAs have been investigated in depth for the case in which all the interaction faults are assumed to have the same strength; however, as a practical concern, the strengths of these faults are not always identical. For real world applications, it would be desirable for a DTA to be able to identify and detect faulty interactions of a strength equal to or less than a specified value under the assumption that the faulty interactions are independent from one another. To the best of our knowledge, the optimality and construction of DTAs for independent interaction faults have not been studied systematically before. In this paper, we establish a general lower bound on the size of DTAs for independent interaction faults and explore the combinatorial feature that enable these DTAs to meet the lower bound. Taking advantage of this combinatorial characterization, several classes of optimum DTAs meeting the lower bound are presented.  相似文献   

19.
Obtaining accurate models of systems which are prone to failures and breakdowns is a difficult task. In this paper we present a methodology which makes the task of modeling failure prone discrete event systems (DESs) considerably less cumbersome, less error prone, and more user-friendly. The task of obtaining commonly used automata models for DESs is non-trivial for most practical systems, owing to the fact that the number of states in the commonly used automata models is exponential in the number of signals and faults. In contrast a model of a discrete event system, in the rules based modeling formalism proposed by the co-authors of this paper, is of size polynomial in the number of signals and faults. In order to model failures, we augment the signals set of the rules based formalism to include binary valued fault signals, the values representing either a non-faulty or a faulty state of a certain failure type. Addition of new fault signals requires introduction of new rules for the added fault signal events, and also modification of the existing rules for non-fault events. The rules based modeling formalism is further extended to model real-time systems, and we apply it to model delay-faults of the system as well. The model of a failure prone DES in the rules based can automatically be converted into an equivalent (timed)-automaton model for a failure analysis in the automaton model framework.  相似文献   

20.
Covering arrays have been widely used to detect the presence of faults in large software and hardware systems. Indeed, finding failures that result from faulty interactions requires that all interactions that may cause faults be covered by a test case. However, finding the actual faults requires more, because the failures resulting from two potential sets of faults must not be the same. The combinatorial requirements on test suites to enable a tester to locate the faults are developed, and set in the context of similar combinatorial search questions. Test suites known as locating and detecting arrays to locate faults both in principle and in practice generalize covering arrays, thereby addressing combinatorial fault characterization. In common with covering arrays, these locating and detecting arrays scale logarithmically in size with the number of factors, but unlike covering arrays they support complete characterization of the interactions that underlie faults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号