首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
The dewetting transitions of two hydrophobic plates immersed in pure water, aqueous ethanol solutions with concentrations from 25% to 90%, and pure ethanol were investigated by molecular dynamics simulations, where the dewetting transition was analogous to a first-order phase transition from liquid to vapor. It was found that the dewetting transitions occurred except that in the pure ethanol system. Although the ethanol molecules prefer to locate in the vicinity of the two plates, the inter-plate region is unfavorable for water molecules, due to losing more than one hydrogen bond. Moreover, each inter-plate water molecule forms hydrogen bonds on average with about two ethanol molecules. These intermolecular hydrogen bonds cause water and ethanol to cooperatively fill or exit the inter-plate region. Thus, water molecules play a more important role in the inter-plate filling/empty process, and induce the ethanol dewetting transition. Our results provide insight into the effect of water on the ethanol dewetting phenomena.  相似文献   

2.
Experiments and computer simulations demonstrate that water spontaneously fills the hydrophobic cavity of a carbon nanotube. To gain a quantitative thermodynamic understanding of this phenomenon, we use the recently developed two phase thermodynamics method to compute translational and rotational entropies of confined water molecules inside single-walled carbon nanotubes and show that the increase in energy of a water molecule inside the nanotube is compensated by the gain in its rotational entropy. The confined water is in equilibrium with the bulk water and the Helmholtz free energy per water molecule of confined water is the same as that in the bulk within the accuracy of the simulation results. A comparison of translational and rotational spectra of water molecules confined in carbon nanotubes with that of bulk water shows significant shifts in the positions of the spectral peaks that are directly related to the tube radius.  相似文献   

3.
Several conformations of the solvated glycine-based polypeptides were investigated using molecular dynamics simulations. Some properties of water in the neighboring space around these molecules were investigated. It was found that water forms a well-defined layer-the first solvation shell-around the peptide molecule, and thickness of this layer is independent of the peptide structure and is equal to approximately 0.28 nm. Within this layer, water molecules show marked orientations relative to a peptide surface. Using the two-particle contribution to entropy as a measure of structural ordering of water, we found that the first solvation shell contributes 95% or more to the total water ordering around the peptide molecule. In investigating the dynamic properties of water, diffusion coefficients and lifetime of the hydrogen bond, clear differences between solvation layer and the bulk water were observed. It was found that the translational diffusion coefficient, D(T), decreases by 30% or more compared to bulk water; also, the lifetime of the water-water hydrogen bond clearly increases. The rotational diffusion coefficient, however, decreases only slightly, no more than approximately 10%. These differences correspond to the slightly higher energy of the hydrogen bond, and to its slightly distorted geometry. Analyzing the translational dynamics of water in the vicinity of the peptide molecule, it was deduced that the structure of the first solvation shell becomes more rigid than the structure of the bulk water. Investigation of a "pure hydrophobic" form of the polypeptide shows that the structure and the properties of water within the solvation shell are predominantly determined by the hydrophobic effect. The specific interactions between water molecules and various charge groups of the peptide molecule modifies this effect only slightly.  相似文献   

4.
We review here the use of container molecules known as cavitands for performing organic reactions in water. Central to these endeavors are binding forces found in water, and among the strongest of these is the hydrophobic effect. We describe how the hydrophobic effect can be used to drive organic molecule guests into the confined space of cavitand hosts. Other forces participating in guest binding include cation−π interactions, chalcogen bonding and even hydrogen bonding to water involved in the host structure. The reactions of guests take advantage of their contortions in the limited space of the cavitands which enhance macrocyclic and site-selective processes. The cavitands are applied to the removal of organic pollutants from water and to the separation of isomeric guests. Progress is described on maneuvering the containers from stoichiometric participation to roles as catalysts.  相似文献   

5.
The macrocyclic bisphosphonate 2 forms complexes with amino alcohols, amines, and amino acid esters with high association constants in polar organic solvents. Exertion of solvophobic interactions inside the macrocyclic cavity in DMSO and methanol leads to specificity for guest molecules with hydrophobic moieties. Experimental evidence is presented for the insertion of the guest molecules' nonpolar groups into the macrocycle's hydrophobic cavity. NMR spectra of complexes with 2 in DMSO show a molecular imprint of the guest molecule; this gives information about its location inside the macrocycle. In aqueous solutions strong self-association of 2 occurs, which is explained by distinct structural similarities between 2 and micelle-forming phospholipids.  相似文献   

6.
Anchoring of functionalized guest molecules to self-assembled monolayers (SAMs) is key to the development of molecular printboards for nanopatterning. One very promising system involves guest binding to immobilized beta-cyclodextrin (beta-CD) hosts, with guest:host recognition facilitated by a hydrophobic interaction between uncharged anchor groups on the guest molecule and beta-CD hosts self-assembled at gold surfaces. We use molecular dynamics free energy (MDFE) simulations to describe the specificity of guest:beta-CD association. We find good agreement with experimental thermodynamic measurements for binding enthalpy differences between three commonly used phenyl guests: benzene, toluene, and t-butylbenzene. van der Waals interaction with the inside of the host cavity accounts for almost all of the net stabilization of the larger phenyl guests in beta-CD. Partial and full methylation of the secondary rim of beta-CD decreases host rigidity and significantly impairs binding of both phenyl and larger adamantane guest molecules. The beta-CD cavity is also very intolerant of guest charging, penalizing the oxidized state of ferrocene by at least 7 kcal/mol. beta-CD hence expresses moderate specificity toward uncharged organic guest molecules by van der Waals recognition, with a much higher specificity calculated for electrostatic recognition of organometallic guests.  相似文献   

7.
Molecular dynamics (MD) simulations of structure II clathrate hydrates are performed under canonical (NVT) and isobaric–isothermal (NPT) ensembles. The guest molecule as a small help gas is xenon and gases such as cyclopropane, isobutane and propane are used as large hydrocarbon guest molecule (LHGM). The dynamics of structure II clathrate hydrate is considered in two cases: empty small cages and small cages containing xenon. Therefore, the MD results for structure II clathrate hydrates of LHGM and LHGM + Xe are obtained to clarify the effects of guest molecules on host lattice structure. To understand the characteristic configurations of structure II clathrate hydrate the radial distribution functions (RDFs) are calculated for the studied hydrate system. The obtained results indicate the significance of interactions of the guest molecules on stabilizing the hydrate host lattice and these results is consistent with most previous experimental and theoretical investigations.  相似文献   

8.
The cup-like cavity of pyrogallol[4]arenes has been deepened by the addition of four hydrogen bonded bipyridine molecules to the upper-rim of the calixarene, enabling the extended cup-like molecules to stack inside one another and consequently trap and completely enshroud a single guest molecule within the 250 angstroms3 cavitand formed between two of these stacked "nano-cups".  相似文献   

9.
The role of water in promoting the formation of protofilaments (the basic building blocks of amyloid fibrils) is investigated using fully atomic molecular dynamics simulations. Our model protofilament consists of two parallel beta-sheets of Alzheimer Amyloid-beta 16-22 peptides (Ac-K(16)-L(17)-V(18)-F(19)-F(20)-A(21)-E(22)-NH2). Each sheet presents a distinct hydrophobic and hydrophilic face and together self-assemble to a stable protofilament with a core consisting of purely hydrophobic residues (L(17), F(19), A(21)), with the two charged residues (K(16), E(22)) pointing to the solvent. Our simulations reveal a subtle interplay between a water mediated assembly and one driven by favorable energetic interactions between specific residues forming the interior of the protofilament. A dewetting transition, in which water expulsion precedes hydrophobic collapse, is observed for some, but not all molecular dynamics trajectories. In the trajectories in which no dewetting is observed, water expulsion and hydrophobic collapse occur simultaneously, with protofilament assembly driven by direct interactions between the hydrophobic side chains of the peptides (particularly between F-F residues). For those same trajectories, a small increase in the temperature of the simulation (on the order of 20 K) or a modest reduction in the peptide-water van der Waals attraction (on the order of 10%) is sufficient to induce a dewetting transition, suggesting that the existence of a dewetting transition in simulation might be sensitive to the details of the force field parametrization.  相似文献   

10.
We have carried out a series of molecular dynamics simulations of water containing a narrow carbon nanotube as a solute to investigate the filling and emptying of the nanotube and also the modifications of the density and hydrogen bond distributions of water inside and also in the vicinity of the outer surfaces of the nanotube. Our primary goal is to look at the effects of varying nanotube diameter, wall thickness and also solute-solvent interactions on the solvent structure in the confined region also near the outer surfaces of the solute. The thickness of the walls is varied by considering single and multi-walled nanotubes and the interaction potential is varied by tuning the attractive strength of the 12–6 pair interaction potential between a carbon atom of the nanotubes and a water molecule. The calculations are done for many different values of the tuning parameter ranging from fully Lennard-Jones to pure repulsive pair interactions. It is found that both the solvation characteristics and hydrogen bond distributions can depend rather strongly on the strength of the attractive part of the solute-water interaction potential. The thickness of the nanotube wall, however, is found to have only minor effects on the density profiles, hydrogen bond network and the wetting characteristics. This indicates that the long range electrostatic interactions between water molecules inside and on the outer side of the nanotube do not make any significant contribution to the overall solvation structure of these hydrophobic solutes. The solvation characteristics are primarily determined by the balance between the loss of energy due to hydrogen bond network disruption, cavity repulsion potential and offset of the same by attractive component of the solute-water interactions. Our studies with different system sizes show that the essential features of wetting and dewetting characteristics of narrow nanotubes for different diameter and interaction potentials are also present in relatively smaller systems consisting of about five hundred molecules. We dedicate this work to Professor Debashis Mukherjee on his 60th Birthday.  相似文献   

11.
Clathrates have been proposed for use in a variety of applications including gas storage, mixture separation and catalysis due to the potential for controlled guest diffusion through their porous lattices. Here molecular dynamics simulations are employed to study guest transport in clathrates of hydroquinone (HQ) and Dianin’s compound (DC). Systems investigated were HQ with methanol and acetonitrile, and DC with methanol and ethanol. Simulations were set up with one guest in the pore, two guests in the pore and one vacancy in the pore and a filled pore, and free‐energy barriers for movement between cavities of the pore were estimated for all cases. Comparison between these simulations indicates that guest transport most likely proceeds by molecules moving from full to empty cavities consecutively, one by one, rather than in a concerted manner. Thus, the presence of empty cavities is very important for guest transport, which becomes more energetically demanding in fully loaded systems. Flexibility of the host can assist guest transport. In the studied DC clathrates transport occurs via an intermediate conformation in which the hydroxyl group of the alcohol guest molecule participates in the hydrogen‐bonded ring of the host. We also address the issue of the number of methanol guest molecules that DC accommodates, for which conflicting information exists. We found that this is likely to be temperature dependent and suggest that under some conditions the system is most likely non‐stoichiometric.  相似文献   

12.
A water-soluble deep cavitand bearing amides on the upper rim and trimethyl ammonium groups on the feet was synthesized. The open-ended cavity is stabilized by the intramolecular hydrogen bonds formed between the adjacent amides, and the introduction of trimethylammonium imparts to the cavitand good solubility in water. The cavitand exhibits high binding affinity and selectivity to hydrophilic molecules in water. With certain guests, such as cyclohexyl alcohols, amines and acids, the recognition involves the synergistic action of hydrogen bonding with hydrophobic effects. The binding phenomena are interpreted in terms of a fixed solvent cage presented by the host to the guest.  相似文献   

13.
Nanoscale dewetting transition in protein complex folding   总被引:1,自引:0,他引:1  
In a previous study, a surprising drying transition was observed to take place inside the nanoscale hydrophobic channel in the tetramer of the protein melittin. The goal of this paper is to determine if there are other protein complexes capable of displaying a dewetting transition during their final stage of folding. We searched the entire protein data bank (PDB) for all possible candidates, including protein tetramers, dimers, and two-domain proteins, and then performed the molecular dynamics (MD) simulations on the top candidates identified by a simple hydrophobic scoring function based on aligned hydrophobic surface areas. Our large scale MD simulations found several more proteins, including three tetramers, six dimers, and two two-domain proteins, which display a nanoscale dewetting transition in their final stage of folding. Even though the scoring function alone is not sufficient (i.e., a high score is necessary but not sufficient) in identifying the dewetting candidates, it does provide useful insights into the features of complex interfaces needed for dewetting. All top candidates have two features in common: (1) large aligned (matched) hydrophobic areas between two corresponding surfaces, and (2) large connected hydrophobic areas on the same surface. We have also studied the effect on dewetting of different water models and different treatments of the long-range electrostatic interactions (cutoff vs PME), and found the dewetting phenomena is fairly robust. This work presents a few proteins other than melittin tetramer for further experimental studies of the role of dewetting in the end stages of protein folding.  相似文献   

14.
We used molecular dynamics simulations to investigate the thermodynamics of filling of a (6,6) open carbon nanotube (diameter D = 0.806 nm) solvated in TIP3P water over a temperature range from 280 K to 320 K at atmospheric pressure. In simulations of tubes with slightly weakened carbon-water attractive interactions, we observed multiple filling and emptying events. From the water occupancy statistics, we directly obtained the free energy of filling, and from its temperature dependence the entropy of filling. We found a negative entropy of about -1.3 k(B) per molecule for filling the nanotube with a hydrogen-bonded single-file chain of water molecules. The entropy of filling is nearly independent of the strength of the attractive carbon-water interactions over the range studied. In contrast, the energy of transfer depends strongly on the carbon-water attraction strength. These results are in good agreement with entropies of about -0.5 k(B) per water molecule obtained from grand-canonical Monte Carlo calculations of water in quasi-infinite tubes in vacuum under periodic boundary conditions. Overall, for realistic carbon-water interactions we expect that at ambient conditions filling of a (6,6) carbon nanotube open to a water reservoir is driven by a favorable decrease in energy, and opposed by a small loss of water entropy.  相似文献   

15.
Molecular dynamics simulation of solid solutions of He and Ar inice II at T 200 K has shown that amplitudes of water moleculeoscillations diminish when noble gas atoms fill the cavities ofthe hydrogen-bonded framework. The effect of Ar atoms ismore pronounced. Slow diffusion of He along trigonal axis isobserved when not all the cavities are filled. He and Ar atomsexert little effect on frequencies of translational and librationalvibrations of the water molecules. Type II empty gas hydrateframework (CSII) is quite stable at T 200 K. Amplitudes ofoscillations of water molecules which occupy differentcrystallographic positions are different. Filling of the cavitiesin the CSII framework with Ar atoms causes diminutionof the amplitudes of water molecule vibrations, and differencebetween amplitudes of vibration of molecules occupyingdifferent positions becomes less pronounced. Large cavities inthe CSII framework can accommodate two Ar atoms withoutdistortion. No diffusion of guest Ar atoms was observed at 200 Kin CSII framework.  相似文献   

16.
We studied by molecular dynamics simulations the temperature dependence of hydrophobic association and drying transition of large-scale solutes. Similar to the behavior of small solutes, we found the association process to be characterized by a large negative heat capacity change. The origin of this large change in heat capacity is the high fragility of hydrogen bonds between water molecules at the interface with hydrophobic solutes; an increase in temperature breaks more hydrogen bonds at the interface than in the bulk. With increasing temperature, both entropy and enthalpy changes for association strongly decrease, while the change in free energy weakly varies, exhibiting a small minimum at high temperatures. At around T=Ts=360 K, the change in entropy is zero, a behavior similar to the solvation of small nonpolar solutes. Unexpectedly, we find that at Ts, there is still a substantial orientational ordering of the interfacial water molecules relative to the bulk. Nevertheless, at this point, the change in entropy vanishes due to a compensating contribution of translational entropy. Thus, at Ts, there is rotational order and translational disorder of the interfacial water relative to bulk water. In addition, we studied the temperature dependence of the drying-wetting transition. By calculating the contact angle of water on the hydrophobic surface at different temperatures, we compared the critical distance observed in the simulations with the critical distance predicted by macroscopic theory. Although the deviations of the predicted from the observed values are very small (8-23%), there seems to be an increase in the deviations with an increase in temperature. We suggest that these deviations emerge due to increased fluctuations, characterizing finite systems, as the temperature increases.  相似文献   

17.
In this work, we report a dual-control-volume grand canonical molecular dynamics simulation study of the transport of a water and methanol mixture under a fixed concentration gradient through nanotubes of various diameters and surface chemistries. Methanol and water are selected as fluid molecules since water represents a strongly polar molecule while methanol is intermediate between nonpolar and strongly polar molecules. Carboxyl acid (-COOH) groups are anchored onto the inner wall of a carbon nanotube to alter the hydrophobic surface into a hydrophilic one. Results show that the transport of the mixture through hydrophilic tubes is faster than through hydrophobic nanotubes although the diffusion of the mixture is slower inside hydrophilic than hydrophobic pores due to a hydrogen network. Thus, the transport of the liquid mixture through the nanotubes is controlled by the pore entrance effect for which hydrogen bonding plays an important role.  相似文献   

18.
Two systems of 1: 1 inclusion of host β-cyclodextrin and guest p-cresol in nano-drip including 427 H2O molecules and in vacuum have been studied by the constrain molecular dynamics simulation technique with pcff force field and Rattle bond algorithm. The analysis on the dynamic structure of inclusion and radial distribution function of several kinds of oxygen atoms shows that the CD inclusion was stable during the simulation time period in two systems and none of water molecule was found to move into the CD cavity in the drip within 200 ps which conformed the hydrophobic property of CD cavity. In the drip,an obvious hydration caused by H-bonding existing in the CD hydrophilic outsides was observed,and it agreed well with the CD properties. The obvious H-bonding interactions existing between phenyl hydroxyl and water molecules in the drip and between phenyl hydroxyl and CD cavity in vacuum made the guest molecule insert into the CD cavity shallower in drip case than in vacuum case. It was concluded that the constrain molecular dynamics simulation technique can be used to investigate the dynamic behavior of CD aqueous solution.  相似文献   

19.
A series of explicit solvent molecular dynamics simulations has been performed to investigate the temperature dependence of salt bridge interactions between two freely diffusing amino acids. The simulations, performed at 25, 50, 75, and 100 degrees C, allow a large number of distinct association and dissociation events to be directly observed, without the imposition of additional forces to drive association. Analysis of contact frequencies for atom pairs demonstrates that the number of salt bridge contacts between the two molecules is unaffected by temperature, whereas the numbers of hydrophobic and polar contacts are greatly diminished. A second, independent set of simulations-using rigid, prototypical molecule types-allows the differing temperature dependences of hydrophobic, polar, and salt bridge interactions to be unambiguously examined. In the prototype molecule simulations, the salt bridge interaction is found to substantially increase in stability at 100 degrees C relative to 25 degrees C. This difference in behavior between flexible amino acids and rigid prototype molecules is perhaps a direct manifestation of the effects of conformational entropy on association thermodynamics. Overall, the results demonstrate that salt bridge interactions are extremely resilient to temperature increases and, as such, are uniquely suited to promoting protein stability at high temperatures.  相似文献   

20.
Binding between biomolecules is usually accompanied by the formation of direct interactions with displacement of water from the binding sites. In some cases, however, the interactions are mediated by ordered water molecules, whose effect on binding affinity and the other thermodynamic functions is unclear. In this work, we compute the contribution of one such water molecule, the strongly bound water molecule at the binding site of HIV-1 protease, to the thermodynamic properties using statistical mechanical formulas for the energy and entropy. The requisite correlation functions are obtained by molecular dynamics simulations. We find that the entropic penalty of ordering is large but is outweighed by the favorable water-protein interactions. We also find a large negative contribution from this water molecule to the heat capacity. This approach could be useful in rational drug design by estimating which bound water molecules would be most favorable to displace.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号