首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
The gas‐phase pyrolytic decomposition mechanisms of 3‐anilino‐1‐propanol with the products of aniline, ethylene, and formaldehyde or N‐methyl aniline and aldehyde were studied by density functional theory. The geometries of the reactant, transition states, and intermediates were optimized at the B3LYP/6‐31G (d, p) level. Vibration analysis was carried out to confirm the transition state structures, and the intrinsic reaction coordinate method was performed to search the minimum energy path. Four possible reaction channels are shown, including two concerted reactions of direct pyrolytic decomposition and two indirect channels in which the reactant first becomes a ring‐like intermediate, followed by concerted pyrogenation. One of the concerted reactions in the direct pyrolytic decomposition has the lowest activation barrier among all the four channels, and so, it occurs more often than others. The results appear to be consistent with the experimental outcomes. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

2.
2‐Furaldehyde (2‐FA), also known as furfural or 2‐furancarboxaldehyde, is an heterocyclic aldehyde that can be obtained from the thermal dehydration of pentose monosaccharides. This molecule can be considered as an important sustainable intermediate for the preparation of a great variety of chemicals, pharmaceuticals and furan‐based polymers. Despite the great importance of this molecule, its gas‐phase basicity (GB) has never been measured. In this work, the GB of 2‐FA was determined by the extended Cooks's kinetic method from electrospray ionization triple quadrupole tandem mass spectrometric experiments along with theoretical calculations. As expected, computational results identify the aldehydic oxygen atom of 2‐FA as the preferred protonation site. The geometries of O‐O‐cis and O‐O‐trans 2‐FA and of their six different protomers were calculated at the B3LYP/aug‐TZV(d,p) level of theory; proton affinity (PA) values were also calculated at the G3(MP2, CCSD(T)) level of theory. The experimental PA was estimated to be 847.9 ± 3.8 kJ mol?1, the protonation entropy 115.1 ± 5.03 J mol?1 K?1 and the GB 813.6 ± 4.08 kJ mol?1 at 298 K. From the PA value, a ΔH°f of 533.0 ± 12.4 kJ mol?1 for protonated 2‐FA was derived. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
This study reports 6FDA:BPDA‐DAM polyimide‐derived hollow fiber carbon molecular‐sieve (CMS) membranes for hydrogen and ethylene separation. Since H2/C2H4 selectivity is the lowest among H2/(C1‐C3) hydrocarbons, an optimized CMS fiber for this gas pair is useful for removing hydrogen from all‐cracked gas mixtures. A process we term hyperaging provides highly selective CMS fiber membranes by tuning CMS ultramicropores to favor H2 over larger molecules to give a H2/C2H4 selectivity of over 250. Hyperaging conditions and a hyperaging mechanism are discussed in terms of an expedited physical aging process, which is largely controlled by the hyperaging temperature. For the specific CMS material considered here, a hyperaging temperature beyond 90 °C but less than 250 °C works best. Hyperaging also stabilizes CMS materials against physical aging and stabilizes the performance of H2 separation over extended periods. This work opens a door in the development of CMS materials for the separation of small molecules from large molecules.  相似文献   

4.
Integrating gas as a main building block into nanomaterial construction is a challenging mission that remains elusive. Herein, we report a gas‐constructed vesicular system formed by CO2 gas and frustrated Lewis pairs (FLPs). Two molecular triads bearing three bulky borane and phosphine groups are designed as trivalent disc‐like FLP monomers. CO2, as a gas cross‐linker, can drive the two‐dimensional polymerization of these two FLP monomers, leading to the generation of planar FLP networks that further transform into a thermodynamically favored membranous vesicle structure. Gas‐guided vesicle formation is also applicable to other inert but FLP‐activatable gases. Different gas linkages can form vesicles with distinct architectures, sizes, and morphologies. We envisage that this study would suggest a new concept that exploits gases to fabricate tunable nanomaterials.  相似文献   

5.
A series of indan‐containing polyimides were synthesized, and their gas‐permeation behavior was characterized. The four polyimides used in this study were synthesized from an indan‐containing diamine [5,7‐diamino‐1,1,4,6‐tetramethylindan (DAI)] with four dianhydrides [3,3′4,4′‐benzophenone tetracarboxylic dianhydride (BTDA), 3,3′4,4′‐oxydiphthalic dianhydride (ODPA), (3,3′4,4′‐biphenyl tetracarboxylic dianhydride (BPDA), and 2,2′‐bis(3,4′‐dicarboxyphenyl) hexafluoropropane dianhydride (6FDA)]. The gas‐permeability coefficients of these four polyimides changed in the following order: DAI–BTDA < DAI–ODPA < DAI–BPDA < DAI–6FDA. This was consistent with the increasing order of the fraction of free volume (FFV). Moreover, the gas‐permeability coefficients were almost doubled from DAI–ODPA to DAI–BPDA and from DAI–BPDA to DAI–6FDA, although the FFV differences between the two polyimides were very small. The gas permeability and diffusivity of these indan‐containing polyimides increased with temperature, whereas the permselectivity and diffusion selectivity decreased. The activation energies for the permeation and diffusion of O2, N2, CH4, and CO2 were estimated. In comparison with the gas‐permeation behavior of other indan‐containing polymers, for these polyimides, very good gas‐permeation performance was found, that is, high gas‐permeability coefficients and reasonably high permselectivity. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2769–2779, 2004  相似文献   

6.
Absolute rate coefficients for the gas‐phase reactions of trans‐dichloroethene and trichloroethene with O(3P) atoms have been measured at 298 K using a discharge flow tube coupled to a chemiluminescence detection system. The observed rate constant values are (2.2 ± 0.4) × 10?13 and (1.4 ± 0.2) × 10?13 cm3 molecule?1 s?1, respectively. The experiments were carried out under pseudo‐first‐order conditions with [O(3P)]o ? [alkene]o. These results are compared to those of O atom reactions with other chloroethenes and with different electrophiles, such as OH and NO3. Different factors that affect the rate of addition to the double bond are considered. The rate constants for these reactions do not correlate in a simple manner with the experimental ionization potential, as is the case in the alkene and methyl‐substituted alkene reactions. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 415–421, 2001  相似文献   

7.
Although the deleterious effects of ozone on the human respiratory system are well‐known, many of the precise chemical mechanisms that both cause damage and afford protection in the pulmonary epithelial lining fluid are poorly understood. As a key first step to elucidating the intrinsic reactivity of ozone with proteins, its reactions with deprotonated cysteine [Cys?H]? are examined in the gas phase. Reaction proceeds at near the collision limit to give a rich set of products including 1) sequential oxygen atom abstraction reactions to yield cysteine sulfenate, sulfinate and sulfonate anions, and significantly 2) sulfenate radical anions formed by ejection of a hydroperoxy radical. The free‐radical pathway occurs only when both thiol and carboxylate moieties are available, implicating electron‐transfer as a key step in this reaction. This novel and facile reaction is also observed in small cys‐containing peptides indicating a possible role for this chemistry in protein ozonolysis.  相似文献   

8.
The reaction mechanism, thermodynamic and kinetic properties for diazotization and nitration of 3,5‐diamino‐1,2,4‐triazole were studied by a density functional theory. The geometries of the reactants, transition states, and intermediates were optimized at the B3LYP/6‐31G (d, p) level. Vibrational analysis was carried out to confirm the transition state structures, and the intrinsic reaction coordinate (IRC) method was used to explore the minimum energy path. The single‐point energies of all stagnation points were further calculated at the B3LYP (MP2)/6‐311+G (2d, p) level. The statistical thermodynamic method and Eyring transition state theory with Wigner correction were used to study the thermodynamic and kinetic characters of all reactions within 0–25°C. Two reaction channels are computed, including the diazotization and nitration of 3‐NH2 or 5‐NH2, and there are six steps in each channel. The reaction rate in each step is increased with temperature. The last step in each channel is the slowest step. The first, second, and fifth steps are exothermic reactions, and are favored at lower temperature in the thermodynamics. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

9.
The gas‐transport properties of one of a family of well‐known adhesives, Loctite 350®, were studied. Permeability, solubility, and diffusivity coefficients, together with the activation energies of diffusion and permeation and the solution enthalpy, were determined from 20 to 40 °C for oxygen, nitrogen, carbon dioxide, and methane. Loctite 350® showed relatively high permselectivity and permeability for the gas pairs O2/N2 and CO2/CH4, especially for the former. The possibility of preparing very thin layers on various kinds of supports from these photocurable polymers makes them promising materials for gas‐separation devices. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 786–795, 2001  相似文献   

10.
The gas‐phase elimination kinetics of the ethyl ester of two α‐amino acid type of molecules have been determined over the temperature range of 360–430°C and pressure range of 26–86 Torr. The reactions, in a static reaction system, are homogeneous and unimolecular and obey a first‐order rate law. The rate coefficients are given by the following equations. For N,N‐dimethylglycine ethyl ester: log k1(s?1) = (13.01 ± 3.70) ? (202.3 ± 0.3)kJ mol?1 (2.303 RT)?1 For ethyl 1‐piperidineacetate: log k1(s?1) = (12.91 ± 0.31) ? (204.4 ± 0.1)kJ mol?1 (2.303 RT)?1 The decompositon of these esters leads to the formation of the corresponding α‐amino acid type of compound and ethylene. However, the amino acid intermediate, under the condition of the experiments, undergoes an extremely rapid decarboxylation process. Attempts to pyrolyze pure N,N‐dimethylglycine, which is the intermediate of dimethylglycine ethyl ester pyrolysis, was possible at only two temperatures, 300 and 310°C. The products are trimethylamine and CO2. Assuming log A = 13.0 for a five‐centered cyclic transition‐state type of mechanism in gas‐phase reactions, it gives the following expression: log k1(s?1) = (13.0) ? (176.6)kJ mol?1 (2.303 RT)?1. The mechanism of these α‐amino acids differs from the decarbonylation elimination of 2‐substituted halo, hydroxy, alkoxy, phenoxy, and acetoxy carboxylic acids in the gas phase. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33:465–471, 2001  相似文献   

11.
A novel process for synthesizing nylon‐6 and poly(?‐caprolactone) by microwave irradiation of the respective monomers, ?‐caprolactam and ?‐caprolactone, is described. The ring opening of ?‐caprolactam to produce nylon‐6 was performed in a microwave oven by the forward power being controlled to about 90–135 W in the presence of an ω‐aminocaproic acid catalyst (10 mol %) and for periods of 1–3 h at temperatures varying from 250 to 280 °C. The ring opening of ?‐caprolactone to produce poly(?‐caprolactone) was performed in a microwave oven by the forward power being controlled to about 70–100 W for a period of 2 h in the presence of stannous octoate with and without 1,4‐butanediol over a temperature range of 150–200 °C. The yields, conditions of the reactions, and properties of the products generated relative to the thermal processes are discussed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2264–2275, 2002  相似文献   

12.
The structure of nanoparticle agglomerates can have substantial influence on their catalytic activity, as shown here for the oxidation of hydrogen on platinum nanoparticles. The structure of aerosol agglomerates was varied by thermally induced rearrangement of the so‐called primary particles, which were ca. 5 nm in size. In this way, the fraction of outer surface, which is directly accessible for molecules from the gas phase, was varied from a very open agglomerate structure to massive spheres. A Monte‐Carlo (MC) simulation of the surface phenomena was carried out parallel to the experiments, taking into account models for reactions including adsorption, surface diffusion, and desorption. Comparison of the experimental results with these MC simulations indicated that, for gas‐borne nanoparticles, special features appear. For instance, the time scales of experiments and simulations are not identical. This discrepancy can be explained by altered adsorption kinetics on the nanoparticles compared to the kinetics on bulk surfaces, which was introduced into the MC simulation. The assumption of a lower sticking probability for molecules impinging from the gas phase as proposed before in other investigations leads to a shift in the time scale of the MC simulation as well as an increased sticking probability for O‐atoms relative to the H‐atom sticking probability. In addition, the surface‐normalized catalytic activity, given by the turn‐over rate (TOR), is higher for 5‐nm than for 50‐nm particles. Thus, the combination of experiments and simulation may be a useful tool to gain deeper insight into the influence of the properties of catalyst particles on the catalytic activity, whereby the simulation covers the subsecond time range, which is hardly accessible by experimentation.  相似文献   

13.
The gas‐phase elimination kinetics of ethyl 2‐furoate and 2‐ethyl 2‐thiophenecarboxylate was carried out in a static reaction system over the temperature range of 623.15–683.15 K (350–410°C) and pressure range of 30–113 Torr. The reactions proved to be homogeneous, unimolecular, and obey a first‐order rate law. The rate coefficients are expressed by the following Arrhenius equations: ethyl 2‐furoate, log k1 (s?1) = (11.51 ± 0.17)–(185.6 ± 2.2) kJ mol?1 (2.303 RT)?1; ethyl 2‐thiophenecarboxylate, log k1 (s?1) = (11.59 ± 0.19)–(183.8 ± 2.4) kJ mol?1 (2.303 RT)?1. The elimination products are ethylene and the corresponding heteroaromatic 2‐carboxylic acid. However, as the reaction temperature increases, the intermediate heteroaromatic carboxylic acid products slowly decarboxylate to give the corresponding heteroaromatic furan and thiophene, respectively. The mechanisms of these reactions are suggested and described. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 41: 145–152, 2009  相似文献   

14.
The kinetics of the gas‐phase elimination of the title compounds has been determined in a static reaction system over the temperature range of 340–420°C and pressure range of 45–96 Torr. The reactions proved to be homogeneous, unimolecular, and obey a first‐order rate law. The estimated rate coefficients are represented by the following Arrhenius expressions: Ethyl 1‐piperidine carboxylate Ethyl pipecolinate Ethyl 1‐methyl pipecolinate The first step of decomposition of these esters is the formation of the corresponding carboxylic acids and ethylene. The acid intermediate undergoes a very fast decarboxylation process. The mechanism of this elimination reactions is suggested on the basis of the kinetic and thermodynamic parameters. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 37: 383–389, 2005  相似文献   

15.
Specific helix oligomerization between transmembrane segments (TMSs) is often promoted by motifs like GxxxG. Disruption of this motif in the transmembrane segments of vesicular stomatitis virus G‐protein and of glycophorin A results in a reduced dimerization level studied by in vivo systems like ToxR. This paper reports the influence of sequence motifs like GxxxG in solution and the gas phase. The transmembrane segments may behave differently in the gas and liquid phase, because of the absence of surrounding solvent molecules in the gas phase. Comparison of experiments depending on peptide properties performed in the gas and liquid phase discloses that the peptides retain ‘some memory’ of their liquid‐phase structure in the gas phase. A direct correlation has been found between helicity in solution as determined by circular dichroism and dimerization in the gas phase monitored by electrospray mass spectrometry. These results show that a proper folding in solution is required for oligomerization. On the other hand, sequence‐specific oligomerization depending on the GxxxG motif was not observed with the mass spectrometric detection. Further on, neither concentration‐dependent complex studies nor studies regarding complex stability in the gas phase – via collision‐induced dissociation (CID) – led to sequence‐specific differences. Finally, the findings show that in mass spectrometric measurements noncovalent interactions of studied TMSs is rather more dependent on the secondary structure and proper folding than on their primary structure. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
The rates of the hydride abstractions from the 2‐aryl‐1,3‐dimethyl‐benzimidazolines 1a – f by the benzhydrylium tetrafluoroborates 3a – e were determined photometrically by the stopped‐flow method in acetonitrile at 20 °C. The reactions follow second‐order kinetics, and the corresponding rate constants k2 obey the linear free energy relationship log k2(20 °C)= s(N+E), from which the nucleophile‐specific parameters N and s of the 2‐arylbenzimidazolines 1a – c have been derived. With nucleophilicity parameters N around 10, they are among the most reactive neutral C? H hydride donors which have so far been parameterized. The poor correlation between the rates of the hydride transfer reactions and the corresponding hydricities (ΔH0) indicates variable intrinsic barriers.  相似文献   

17.
The intramolecular aryl–phenyl scrambling reaction within palladium–DPPP–aryl complex (DPPP=1,3‐bis(diphenylphosphino)propane) ions was analyzed by state‐of‐the‐art tandem MS, including gas‐phase ion/molecule reactions. The Mizoroki–Heck cross‐coupling reaction was performed in the gas phase, and the intrinsic reactivity of important intermediates could be examined. Moreover, linear free‐energy correlations were applied, and a mechanism for the scrambling reaction proceeding via phosphonium cations was assumed.  相似文献   

18.
Gas‐phase ligand exchange reactions between M(acac)2 and M(hfac)2 species, where M is Cu(II) and/or Ni(II), were observed to occur in a double‐focusing reverse‐geometry magnetic sector mass spectrometer. The gas‐phase mixed ligand product, [M(acac)(hfac)]+, was formed following the co‐sublimation of either homo‐metal or hetero‐metal precursors. The gas‐phase formation of [Cu(acac)(hfac)]+ from hetero‐metal precursors is reported herein for the first time. The [Ni(acac)(hfac)]+ complex is also observed for the first time to form following the co‐sublimation of not only Ni precursors, but also from separate Ni and Cu precursors. The corresponding fragmentation patterns of these species are also presented, and the mixed metal mixed ligand product [NiCu(acac)2(hfac)]+ is observed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
In addition to its high thermal stability, repetitive hydration/dehydration tests have revealed that the porous zirconium terephthalate UiO‐66 switches reversibly between its dehydroxylated and hydroxylated versions. The structure of its dehydroxylated form has thus been elucidated by coupling molecular simulations and X‐ray powder diffraction data. Infrared measurements have shown that relatively weak acid sites are available while microcalorimetry combined with Monte Carlo simulations emphasize moderate interactions between the UiO‐66 surface and a wide range of guest molecules including CH4, CO, and CO2. These properties, in conjunction with its significant adsorption capacity, make UiO‐66 of interest for its further evaluation for CO2 recovery in industrial applications. This global approach suggests a strategy for the evaluation of metal–organic frameworks for gas‐based applications.  相似文献   

20.
A self‐polymerizable quinoxaline monomer (A‐B) has been synthesized and polymerized via aromatic nucleophilic substitution reactions. An isomeric mixture of self‐polymerizable quinoxaline monomers—2‐(4‐hydroxyphenyl)‐3‐phenyl‐6‐fluoroquinoxaline and 3‐(4‐hydroxyphenyl)‐2‐phenyl‐6‐fluoroquinoxaline—was polymerized in N‐methyl‐2‐pyrrolidinone (NMP) to afford high molecular weight polyphenylquinoxaline (PPQ) with intrinsic viscosities up to 1.91 dL/g and a glass‐transition temperature (Tg) of 251 °C. A series of comonomers was polymerized with A‐B to form PPQ/polysulfone (PS), PPQ/polyetherether ketone (PEEK), and PPQ/polyethersulfone (PES) copolymers. The copolymers readily obtained high intrinsic viscosities when fluorine was displaced in NMP under reflux. However, single‐electron transfer (SET) side reactions, which limit molecular weight, played a more dominant role when chlorine was displaced instead of fluorine. SET side reactions were minimized in the synthesis of PPQ/PS copolymers through mild polymerization conditions in NMP for longer polymerization times. Thus, the Tg's of PES (Tg = 220 °C), PEEK (Tg = 145 °C), and PS (Tg = 195 °C) were raised through the incorporation of quinoxaline units into the polymer. Copolymers with high intrinsic viscosities resulted in all cases, except in the case of PPQ/PEEK copolymers when 4,4′‐dichlorobenzophenone was the comonomer. © 2001 John Wiley & Sons, Inc. J Polym Sci A Part A: Polym Chem 39: 2037–2042, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号