首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adams RD  Kwon OS  Smith MD 《Inorganic chemistry》2002,41(21):5525-5529
The reaction of Mn(2)(CO)(7)(mu-S(2)) (2) with SMe(2) yielded the new complexes Mn(2)(CO)(6)(mu-S(2))(mu-SMe(2)) (3) and Mn(4)(CO)(14)(SMe(2))(mu(3)-S(2))(mu(4)-S(2)) (4) in 18 and 41% yields, respectively. The reaction of 2 with the cyclic thioether thietane SCH(2)CH(2)CH(2) yielded the new complexes Mn(2)(CO)(6)(mu-S(2))(mu-SCH(2)CH(2)CH(2)) (5) and Mn(4)(CO)(14)(SCH(2)CH(2)CH(2))(mu(3)-S(2))(mu(4)-S(2)) (6) in 12 and 52% yields, respectively, and the reaction of 2 with 1,4,9-trithiacyclododecane (12S3) yielded Mn(2)(CO)(6)(mu-12S3)(mu-S(2)) (7) and Mn(4)(CO)(14)(12S3)(mu(3)-S(2))(mu(4)-S(2)) (8) in 8 and 24% yields, respectively. Compounds 3 and 5-7 were characterized crystallographically. Compounds 3, 5, and 7 have similar structures in which the thioether ligand has replaced the bridging carbonyl ligand of 2 and its sulfur atom has been inserted into the manganese-manganese bond. The two manganese atoms are not mutually bonded, and two Mn(CO)(3) groups are held together through the bridging disulfido ligand and the bridging sulfur atom of the thioether ligand. Compound 6 contains a Mn(4)(mu(3)-S(2))(mu(4)-S(2)) moiety without metal-metal bonds. On the basis of spectroscopic data, compounds 4 and 8 are believed to have similar structures.  相似文献   

2.
The reaction of Mn(2)(CO)(7)(mu-S(2)) with [CpNi(CO)](2) yielded the paramagnetic new compound Cp(2)Ni(2)Mn(CO)(3)(mu(3)-S)(2) (1) and a new hexanuclear metal product Cp(2)Ni(2)Mn(4)(CO)(14)(mu(6)-S(2))(mu(3)-S)(2) (2). Structurally, compound 1 contains two triply bridging sulfido ligands on opposite sides of an open Ni(2)Mn triangular cluster. EPR and temperature-dependent magnetic susceptibility measurements of 1 show that it contains one unpaired electron. The electronic structure of 1 was determined by Fenske-Hall molecular orbital calculations which show that the unpaired electron occupies a low lying antibonding orbital delocalized unequally across the three metal atoms. The selenium homologue Cp(2)Ni(2)Mn(CO)(3)(mu(3)-Se)(2) (3) was obtained from the reaction of a mixture of Mn(2)(CO)(10) and [CpNi(CO)](2) with elemental selenium and Me(3)NO.2H(2)O. It also has one unpaired electron. Compound 1 reacted with elemental sulfur to yield the dinickeldimanganese compound, Cp(2)Ni(2)Mn(2)(CO)(6)(mu(4)-S(2))(mu(4)-S(5)), 4, which can also be made from the reaction of Mn(2)(CO)(7)(mu-S(2)) with [CpNi(CO)](2) and sulfur. Compound 4 was converted back to 1 by sulfur abstraction using PPh(3). The reaction of Mn(2)(CO)(10) with [CpNi(CO)](2) in the presence of thiirane yielded the ethanedithiolato compound CpNiMn(CO)(3)(mu-SCH(2)CH(2)S) (5), which was also obtained from the reaction of Mn(4)(CO)(15)(mu(3)-S(2))(mu(4)-S(2)) with [CpNi(CO)](2) in the presence of thiirane. Compound 5 reacted with additional quantities of thiirane to yield the new compound CpNiMn(CO)(3)[mu-S(CH(2)CH(2)S)(2)], 6, which contains a 3-thiapentanedithiolato ligand that bridges the two metal atoms. Compound 6 was also obtained from the reaction of Mn(2)(CO)(10) with [CpNi(CO)](2) and thiirane. The molecular structures of the new compounds 1-6 were established by single-crystal X-ray diffraction analyses.  相似文献   

3.
The reaction of Mn(2)(CO)(7)(mu-S(2)), 1, with Pt(PPh(3))(2)(PhC(2)Ph) yielded the new complex, Mn(2)(CO)(6)Pt(PPh(3))(2)(mu(3)-S)(2), 3, by loss of CO and insertion of a Pt(PPh(3))(2) group into the S-S bond of 1. Complex 3 was characterized crystallographically and was found to consist of an open Mn(2)Pt cluster with one Mn-Mn bond, 2.8154(14) A, one Mn-Pt bond, 2.9109(10) A, and two triply bridging sulfido ligands. Compound 3 reacts with CO to form adduct Mn(2)(CO)(6)(mu-CO)Pt(PPh(3))(2)(mu(3)-S)(2), 4. Compound 4 also contains an open Mn(2)Pt cluster with two triply bridging sulfido ligands but has only one metal-metal bond, Mn-Mn = 2.638(2) A. Under nitrogen, compound 4 readily loses CO and reverts back to 3.  相似文献   

4.
A trinuclear rhenium sulfide cluster complex, [(Ph(3)P)(2)N][Re(3)(mu(3)-S)(mu-S)(3)Cl(6)(PMe(2)Ph)(3)], synthesized from Re(3)S(7)Cl(7), dimethylphenylphosphine, and [(Ph(3)P)(2)N]Cl is readily converted to a bridging SO(2) complex, [(Ph(3)P)(2)N][Re(3)(mu(3)-S)(mu-S)(2)(mu-SO(2))Cl(6)(PMe(2)Ph)(3)], by reaction with O(2). The oxygen atoms on the SO(2) ligand react with phosphines or phosphites to form phosphine oxides or phosphates, and the original cluster complex is recovered. The reaction course has been monitored by (31)P NMR as well as by UV-vis spectroscopy. The catalytic oxygenation of PMePh(2) in the presence of the SO(2) complex shows that turnovers are 8 per hour at 23 degrees C in CDCl(3). The X-ray structures of the cluster complexes are described.  相似文献   

5.
Adams RD  Captain B  Fu W 《Inorganic chemistry》2003,42(4):1328-1333
The reaction of Ru(5)(CO)(15)(mu(5)-C), 1, with Ph(3)GeH at 150 degrees C has yielded two new germanium-rich pentaruthenium cluster complexes: Ru(5)(CO)(11)(mu-CO)(mu-GePh(2))(3)(mu(5)-C), 2; Ru(5)(CO)(11)(mu;-GePh(2))(4)(mu(5)-C), 3. Both compounds contain square pyramidal Ru(5) clusters with GePh(2) groups bridging three and four of the edges of the Ru(5) square base, respectively. When treated with 1 equiv of Ph(3)GeH at 150 degrees C compound 2 is converted to 3. Reaction of 3 with H(2) at 150 degrees C yielded Ru(5)(CO)(10)(mu-GePh(2))(4)(mu(5)-C)(mu-H)(2), 4, containing two hydride ligands and one less CO ligand. Reaction of 4 with hydrogen at 150 degrees C yielded the compound Ru(5)(CO)(10)(mu-GePh(2))(2)(mu(3)-GePh)(2)(mu(3)-H)(mu(4)-CH), 5, by loss of benzene and conversion of two of the bridging GePh(2) groups into triply bridging GePh groups. Compound 5 contains one triply bridging hydride ligand and a quadruply bridging methylidyne ligand formed by addition of one hydrogen atom to the carbido carbon atom.  相似文献   

6.
The reactivity of [MoS(4)](2-) (1) toward PMe(3) was explored in the presence and absence of proton donors. Whereas MeCN solutions of (Et(4)N)(2)[MoS(4)] and PMe(3) are stable, in the presence of H(2)S such solutions catalyze formation of H(2) and SPMe(3). Addition of NH(4+) to such solutions afforded MoS(2)(PMe(3))(4) (2), which can be prepared directly from (NH(4))(2)[1]. Compound 2 is reactive toward thiols via a process proposed to involve the initial dissociation of one PMe(3) ligand, a hypothesis supported by the relative inertness of trans-MoS(2)(dmpe)(2). Benzene solutions of 2 react with EtSH to give Mo(2)(mu-S)(mu-SH)(PMe(3))(4)(SEt)(3) (3Et). Analogous reactions with thiocresol (MeC(6)H(4)SH) and H(2)S gave Mo(2)(mu-S)(mu-SH)(PMe(3))(4)(SR)(3) (R = tol, H). Crystallographic analyses of 3Et, 3H, and 3tol indicate dinuclear species with seven terminal ligands and a Mo(2)(mu-SR)(mu-S) core (r(Mo)(-)(Mo) = 2.748(1) A). From reaction mixtures leading to 3Et from 2, we obtained the intermediate Mo(IV)(2)(mu-S)(2)(SEt)(4)(PMe(3))(2) (4), an edge-shared bis(trigonal pyramidal) structure. Compounds 3H and 3Et react further with H(2)S to give Mo(4)(mu(2)-S)(4)(mu(3)-S)(2)(PMe(3))(6)(SH)(2) (5H) and Mo(4)(mu(2)-S)(4)(mu(3)-S)(2)(PMe(3))(6)(SEt)(2) (5Et), respectively. Analogously, W(4)(mu(2)-S)(4)(mu(3)-S)(2)(PMe(3))(6)(SH)(2) was synthesized from a methanol solution of (NH(4))(2)WS(4) with H(2)S and PMe(3). A highly accurate crystallographic analysis of (NH(4))(2)MoS(4) (R(1) = 0.0193) indicates several weak NH.S interactions.  相似文献   

7.
The reaction of Mn(2)(CO)(7)(mu-S2) (1) with [CpMo(CO)(3)](2) (Cp = C(5)H(5)) and [Cp*Mo(CO)(3)](2) (Cp* = C(5)(CH(3))(5)) yielded the new mixed-metal disulfide complexes CpMoMn(CO)(5)(mu-S2) (2) and Cp*MoMn(CO)(5)(mu-S2) (3) by a metal-metal exchange reaction. Compounds 2 and 3 both contain a bridging disulfido ligand lying perpendicular to the Mo-Mn bond. The bond distances are Mo-Mn = 2.8421(10) and 2.8914(5) A and S-S = 2.042(2) and 1.9973(10) A for 2 and 3, respectively. A tetranuclear metal side product CpMoMn(3)(CO)(13)(mu3-S)(mu4-S) (4) was also isolated from the reaction of 1 with [CpMo(CO)(3)](2). Compounds 2 and 3 react with CO to yield the dithiocarbonato complexes CpMoMn(CO)(5)[mu-SC(=O)S] (5) and Cp*MoMn(CO)(5)[mu-SC(=O)S] (6) by insertion of CO into the S-S bond. Similarly, tert-butylisocyanide was inserted into the S-S bond of 2 and 3 to yield the complexes CpMoMn(CO)(5)[mu-S(C=NBu(t))S] (7) and Cp*MoMn(CO)(5)[mu-S(C=NBu(t))S] (8), respectively. Ethylene and dimethylacetylene dicarboxylate also inserted into the S-S bond of 2 and 3 at room temperature to yield the ethanedithiolato ligand bridged complexes CpMoMn(CO)(5)(mu-SCH(2)CH(2)S) (9), Cp*MoMn(CO)(5)(mu-SCH(2)CH(2)S) (10), CpMoMn(CO)(5)[mu-SC(CO(2)Me)=C(CO(2)Me)S] (11), and Cp*MoMn(CO)(5)[mu-SC(CO(2)Me)=C(CO(2)Me)S] (12). Allene was found to insert into the S-S bond of 2 by using one of its two double bonds to yield the complex CpMoMn(CO)(5)[mu-SCH(2)C(=CH(2))S] (13). The molecular structures of the new complexes 2-7 and 9-13 were established by single-crystal X-ray diffraction analyses.  相似文献   

8.
Adams RD  Kwon OS 《Inorganic chemistry》2003,42(20):6175-6182
Reaction of CpMoMn(CO)(8) with elemental selenium and Me(3)NO in the absence of light yielded the diselenido complex CpMoMn(CO)(5)(mu-Se(2)), 2. Compound 2 contains a bridging diselenido ligand lying perpendicular to the Mo-Mn bond, Mo-Mn = 2.8421(10) A. In the presence of room light, the reaction yielded the tetranuclear metal complex Cp(2)Mo(2)Mn(2)(CO)(7)(mu(3)-Se)(4), 3 (36% yield), and 2 (7% yield). Compound 2 reacted with ethylene to yield the ethanediselenato complex CpMoMn(CO)(5)(mu-SeCH(2)CH(2)Se), 4, by insertion of ethylene into the Se-Se bond. Compound 2 also reacted with (PPh(3))(2)Pt(PhC(2)Ph) and CpCo(CO)(2) to yield the complexes CpMoMnPt(PPh(3))(2)(CO)(5)(mu(3)-Se)(2), 5, and Cp(2)CoMoMn(CO)(5)(mu(3)-Se)(2), 6, respectively, by insertion of the metal groupings CpCo and Pt(PPh(3))(2) into the Se-Se bond of 2. The oxo compound Cp(2)CoMo(O)Mn(CO)(5)(mu(3)-Se)(2), 7, was obtained from 6 by decarbonylation at molybdenum by using Me(3)NO. The molecular structures of the complexes 2-7 were established by single-crystal X-ray diffraction analyses.  相似文献   

9.
Adams RD  Captain B  Fu W  Smith MD 《Inorganic chemistry》2002,41(21):5593-5601
The reaction of Ru(5)(CO)(15)(mu(5)-C), 1, with Ph(3)SnH in the presence of UV irradiation has yielded the Ph(3)SnH adduct Ru(5)(CO)(15)(SnPh(3))(mu(5)-C)(mu-H), 3, by SnH bond activation and cleavage of one Ru-Ru bond in the cluster of 1. The reaction of 1 with Ph(3)SnH at 127 degrees C yielded the high nuclearity cluster compound Ru(5)(CO)(10)(SnPh(3))(mu-SnPh(2))(4)(&mu(5)-C)(mu-H), 4, that contains five tin ligands. Four of these are SnPh(2) groups that bridge each edge of the base of the Ru(5) square pyramidal cluster. The reaction of Ph(3)SnH with the benzene-substituted cluster Ru(5)(CO)(12)(C(6)H(6))(mu(5)-C), 2, at 68 degrees C yielded two products: Ru(5)(CO)(11)(SnPh(3))(C(6)H(6))(mu(5)-C)(mu-H), 5, and Ru(5)(CO)(10)(SnPh(3))(2)(C(6)H(6))(mu(5)-C)(mu-H)(2), 6. Both contain square pyramidal Ru(5) clusters with one and two SnPh(3) groups, respectively. At 127 degrees C, the reaction of 2 with an excess of Ph(3)SnH has led to the formation of two new high-nuclearity cluster complexes: Ru(5)(CO)(8)(mu-SnPh(2))(4)(C(6)H(6))(mu(5)-C), 7, and Ru(5)(CO)(7)(mu-SnPh(2))(4)(SnPh(3))(C(6)H(6))(mu-H), 8. Both compounds contain square pyramidal Ru(5) clusters with SnPh(2) groups bridging each edge of the square base. Compound 8 contains a SnPh(3) group analogous to that of compound 4. When treated with CO, compound 8 is converted to 4. When heated to 68 degrees C, compound 5 was converted to the new compound Ru(5)(CO)(11)(C(6)H(6))(mu(4)-SnPh)(mu(3)-CPh), 9, by loss of benzene and the shift of a phenyl group from the tin ligand to the carbido carbon atom to form a triply bridging benzylidyne ligand and a novel quadruply bridging stannylyne ligand.  相似文献   

10.
Reaction of FvW(2)(H)(2)(CO)(6) with 2/8S(8) in THF results in rapid and quantitative formation of FvW(2)(SH)(2)(CO)(6). The crystal structure of this complex is reported and shows that the two tungsten-hydrosulfide groups are on opposite faces of the fulvalene ligand in an anti configuration. Nevertheless, treatment of FvW(2)(SH)(2)(CO)(6) (1) with PhN[double bond]NPh produces FvW(2)(mu-S(2))(CO)(6) (2) and Ph(H)NN(H)Ph. The crystal structure of the bridging disulfide, which cocrystallizes with 1 in a 2:1 ratio, is also described. Exposure of 2 equiv of *CrCp*(CO)(3) to 1 effects similar H atom transfers yielding 2 HCrCp*(CO)(3) and 2. Attempts to obtain crystals of the latter from solutions derived from this reaction mixture furnished a third product, FvW(2)(mu-S)(CO)(6) (3), which was analyzed crystallographically. The enthalpy of sulfur atom insertion into FvW(2)(H)(2)(CO)(6), yielding 1, has been measured by solution calorimetry.  相似文献   

11.
The reaction of [Ru(3)(CO)(12)] with Ph(3)SnSPh in refluxing benzene furnished the bimetallic Ru-Sn compound [Ru(3)(CO)(8)(mu-SPh)(2)(mu(3)-SnPh(2))(SnPh(3))(2)] which consists of a SnPh(2) stannylene bonded to three Ru atoms to give a planar tetra-metal core, with two peripheral SnPh(3) ligands. The stannylene ligand forms a very short bond to one Ru atom [Sn-Ru 2.538(1) A] and very long bonds to the other two [Sn-Ru 3.074(1) A]. The germanium compound [Ru(3)(CO)(8)(mu-SPh)(2)(mu(3)-GePh(2))(GePh(3))(2)] was obtained from the reaction of [Ru(3)(CO)(12)] with Ph(3)GeSPh and has a similar structure to that of as evidenced by spectroscopic data. Treatment of [Os(3)(CO)(10)(MeCN)(2)] with Ph(3)SnSPh in refluxing benzene yielded the bimetallic Os-Sn compound [Os(3)(CO)(9)(mu-SPh)(mu(3)-SnPh(2))(MeCN)(eta(1)-C(6)H(5))] . Cluster has a superficially similar planar metal core, but with a different bonding mode with respect to that of . The Ph(2)Sn group is bonded most closely to Os(2) and Os(3) [2.786 and 2.748 A respectively] with a significantly longer bond to Os(1), 2.998 A indicating a weak back-donation to the Sn. The reaction of the bridging dppm compound [Ru(3)(CO)(10)(mu-dppm)] with Ph(3)SnSPh afforded [Ru(3)(CO)(6)(mu-dppm)(mu(3)-S)(mu(3)-SPh)(SnPh(3))] . Compound contains an open triangle of Ru atoms simultaneously capped by a sulfido and a PhS ligand on opposite sides of the cluster with a dppm ligand bridging one of the Ru-Ru edges and a Ph(3)Sn group occupying an axial position on the Ru atom not bridged by the dppm ligand.  相似文献   

12.
The complexes PtRu(5)(CO)(15)(PMe(2)Ph)(mu(6)-C) (2), PtRu(5)(CO)(14)(PMe(2)Ph)(2)(mu(6)-C) (3), PtRu(5)(CO)(15)(PMe(3))(mu(6)-C) (4), PtRu(5)(CO)(14)(PMe(3))(2)(mu(6)-C) (5), and PtRu(5)(CO)(15)(Me(2)S)(mu(6)-C) (6) were obtained from the reactions of PtRu(5)(CO)(16)(mu(6)-C) (1) with the appropriate ligand. As determined by NMR spectroscopy, all the new complexes exist in solution as a mixture of isomers. Compounds 2, 3, and 6 were characterized crystallographically. In all three compounds, the six metal atoms are arranged in an octahedral geometry, with a carbido carbon atom in the center. The PMe(2)Ph and Me(2)S ligands are coordinated to the Pt atom in 2 and 6, respectively. In 3, the two PMe(2)Ph ligands are coordinated to Ru atoms. In solution, all the new compounds undergo dynamical intramolecular isomerization by shifting the PMe(2)Ph or Me(2)S ligand back and forth between the Pt and Ru atoms. For compound 2, DeltaH++ = 15.1(3) kcal/mol, DeltaS++ = -7.7(9) cal/(mol.K), and DeltaG(298) = 17.4(6) kcal/mol for the transformation of the major isomer to the minor isomer; for compound 4, DeltaH++ = 14.0(1) kcal/mol, DeltaS++ = -10.7(4) cal/(mol.K), and DeltaG(298) = 17.2(2) kcal/mol for the transformation of the major isomer to the minor isomer; for compound 6, DeltaH++ = 18(1) kcal/mol, DeltaS++ = 21(5) cal/(mol.K) and DeltaG(298) = 12(2) kcal/mol. The shifts of the Me(2)S ligand in 6 are significantly more facile than the shifts for the phosphine ligand in compounds 2-5. This is attributed to a more stable ligand-bridged intermediate for the isomerizations of 6 than that for compounds 2-5. The intermediate for the isomerization of 6 involves a bridging Me(2)S ligand that can use two lone pairs of electrons for coordination to the metal atoms, whereas a tertiary phosphine ligand can use only one lone pair of electrons for bridging coordination.  相似文献   

13.
Complexes of the type TpRu(L)(NCMe)R [L = CO or PMe3; R = Ph or Me; Tp = hydridotris(pyrazolyl)borate] initiate C-H activation of benzene. Kinetic studies, isotopic labeling, and other experimental evidence suggest that the mechanism of benzene C-H activation involves reversible dissociation of acetonitrile, reversible benzene coordination, and rate-determining C-H activation of coordinated benzene. TpRu(PMe3)(NCMe)Ph initiates C-D activation of C6D6 at rates that are approximately 2-3 times more rapid than that for TpRu(CO)(NCMe)Ph (depending on substrate concentration); however, the catalytic hydrophenylation of ethylene using TpRu(PMe3)(NCMe)Ph is substantially less efficient than catalysis with TpRu(CO)(NCMe)Ph. For TpRu(PMe3)(NCMe)Ph, C-H activation of ethylene, to ultimately produce TpRu(PMe3)(eta3-C4H7), is found to kinetically compete with catalytic ethylene hydrophenylation. In THF solutions containing ethylene, TpRu(PMe3)(NCMe)Ph and TpRu(CO)(NCMe)Ph separately convert to TpRu(L)(eta3-C4H7) (L = PMe3 or CO, respectively) via initial Ru-mediated ethylene C-H activation. Heating mesitylene solutions of TpRu(L)(eta3-C4H7) under ethylene pressure results in the catalytic production of butenes (i.e., ethylene hydrovinylation) and hexenes.  相似文献   

14.
Adams RD  Smith JL 《Inorganic chemistry》2005,44(12):4276-4281
The reaction of Rh(4)(CO)(12) with Ph(3)GeH at 97 degrees C has yielded the first rhodium cluster complexes containing bridging germylene and germylyne ligands: Rh(8)(CO)(12)(mu(4)-GePh)(6), 9, and Rh(3)(CO)(5)(GePh(3))(mu-GePh(2))(3)(mu(3)-GePh)(mu-H), 10. When the reaction is performed under hydrogen, the yield of 9 is increased to 42% and no 10 is formed. Compound 9 contains a cluster of eight rhodium atoms arranged in the form of a distorted cube. There are six mu(4)-GePh groups bridging each face of this distorted cube. Four of the rhodium atoms have two terminal carbonyl ligands, while the remaining four rhodium atoms have only one carbonyl ligand. Compound 10 contains a triangular cluster of three rhodium atoms with one terminal GePh(3) ligand, three bridging GePh(2) ligands, and one triply bridging GePh ligand. There is also one hydrido ligand that is believed to bridge one of the Rh-Ge bonds. Compound 9 reacted with PPhMe(2) at 25 degrees C to give the tetraphosphine derivative Rh(8)(CO)(8)(PPhMe(2))(4)(mu(4)-GePh)(6), 11. The structure of 11 is similar to 9 except that a PPhMe(2) ligand has replaced a carbonyl ligand on each the four Rh(CO)(2) groups. Compound 10 reacted with CO at 68 degrees C to give the complex Rh(3)(CO)(6)(mu-GePh(2))(3)(mu(3)-GePh), 12. Compound 12 is formed by the loss of the hydrido ligand and the terminal GePh(3) ligand from 10 and the addition of one carbonyl ligand. All compounds were fully characterized by IR, NMR, elemental, and single-crystal X-ray diffraction analyses.  相似文献   

15.
Reaction of trans-[(MCp)(2)(mu-CH(2))(2)Cl(2)] (M = Rh, Ir; Cp = eta(5)-C(5)Me(5)) with Li(2)S(2) afforded the disulfido complexes [(MCp)(2)(mu-CH(2))(2)(mu-S(2)-S:S')] which were easily oxidized by O(2) to give the oxygenated complexes [(MCp)(2)(mu-CH(2))(2)(mu-SSO(2)-S:S')]. Although [(RhCp)(2)(mu-CH(2))(2)(mu-S(2)-S:S')] gave a complicated mixture when reacted with CH(2)Cl(2) or CHCl(3), [(IrCp)(2)(mu-CH(2))(2)(mu-S(2)-S:S')] reacted with both CH(2)Cl(2) and CHCl(3) to give the dithioformato complex [(IrCp)(2)(mu-CH(2))(2)(mu-S(2)CH-S:S')]Cl and the cyclotetrasulfido complex [((IrCp)(2)(mu-CH(2))(2))(2)(mu-S(4)-S:S':S":S"')]Cl(2). The oxygenated complexes [(RhCp)(2)(mu-CH(2))(2)(mu-SSO(2)-S:S')] reacted with hydrocarbyl halides to afford bridging hydrocarbyl thiolato complexes accompanied by the generation of SO(2) gas. These complexes have been characterized by NMR spectroscopy, ESI-MS, and X-ray diffraction.  相似文献   

16.
The cluster complex Ru(5)(CO)(12)(C(6)H(6))(mu(5)-C), 1, undergoes multiple addition reactions with Ph(3)SnH to yield two new bimetallic cluster complexes: Ru(5)(CO)(8)(mu-SnPh(2))(4)(C(6)H(6))(mu(5)-C), 2, 2% yield, and Ru(5)(CO)(7)(mu-SnPh(2))(4)(SnPh(3))(C(6)H(6))(mu(5)-C)(mu-H), 3, 26% yield, containing four and five tin ligands, respectively. Both compounds consist of a square pyramidal Ru(5) cluster with an interstitial carbido ligand and bridging SnPh(2) groups located across each of the four edges of the base of the Ru(5) square pyramid. Compound 3 contains an additional SnPh(3) group terminally coordinated to one of the ruthenium atoms in the square base.  相似文献   

17.
The clusters Ru(3)(CO)(10)L(2), where L = PMe(2)Ph or PPh(3), are shown by NMR spectroscopy to exist in solution in at least three isomeric forms, one with both phosphines in the equatorial plane on the same ruthenium center and the others with phosphines in the equatorial plane on different ruthenium centers. Isomer interconversion for Ru(3)(CO)(10)(PMe(2)Ph)(2) is highly solvent dependent, with DeltaH decreasing and DeltaS becoming more negative as the polarity of the solvent increases. The stabilities of the isomers and their rates of interconversion depend on the phosphine ligand. A mechanism that accounts for isomer interchange involving Ru-Ru bond heterolysis is suggested. The products of the reaction of Ru(3)(CO)(10)L(2) with hydrogen have been monitored by NMR spectroscopy via normal and para hydrogen-enhanced methods. Two hydrogen addition products are observed with each containing one bridging and one terminal hydride ligand. EXSY spectroscopy reveals that both intra- and interisomer hydride exchange occurs on the NMR time scale. On the basis of the evidence available, mechanisms for hydride interchange involving Ru-Ru bond heterolysis and CO loss are proposed.  相似文献   

18.
Adams RD  Miao S 《Inorganic chemistry》2004,43(26):8414-8426
The reaction of CpMoMn(mu-S(2))(CO)(5), 1, with 1,4-benzoquinone in the presence of irradiation with visible light yielded the quinonedithiolato complex CpMoMn(CO)(5)(mu-S(2)C(6)H(2)O(2)), 2. The new complex CpMoMn(CO)(5)(mu-S(2)C(6)Cl(2)O(2)) (4) was synthesized similarly from 1 and 2,3-dichloro-1,4-benzoquinone. Compounds 2 and 4 were reduced with hydrogen to yield the hydroquinone complexes CpMoMn(CO)(5)[mu-S(2)C(6)H(2)(OH)(2)], 3, and CpMoMn(CO)(5)[mu-S(2)C(6)Cl(2)(OH)(2)], 5. UV-vis irradiation of solutions of Fe(2)(CO)(6)(mu-S(2)) and 1,4-benzoquinone yielded the hydroquinone complex Fe(2)(CO)(6)[mu-S(2)C(6)H(2)(OH)(2)], 6. Compound 6 was oxidized to the quinone complex Fe(2)(CO)(6)(mu-S(2)C(6)H(2)O(2)), 7, by using 2,3-dichloro-5,6-dicyano-1,4-benzoquinone. Substitution of the CO ligands on 6 by PPh(3) yielded the derivatives Fe(2)(CO)(5)(PPh(3))[mu-S(2)C(6)H(2)(OH)(2)], 8, and Fe(2)(CO)(4)(PPh(3))(2)[mu-S(2)C(6)H(2)(OH)(2)], 9. The electrochemical properties of 3, 5, 6, 8, and 9 were measured by cyclic voltammetry. The molecular structure of each of the new compounds 2-9 was established by single-crystal X-ray diffraction analyses.  相似文献   

19.
The tetrahydroborate ligand in [Ru(eta(2)-BH(4))(CO)H(PMe(2)Ph)(2)], 1, allows conversion under very mild conditions to [Ru(CO)(Et)H(PMe(2)Ph)(3)], 7, by way of [Ru(eta(2)-BH(4))(CO)Et(PMe(2)Ph)(2)], 4. Deprotection of the hydride ligand in 7(by BH(3) abstraction) occurs only in the final step, thus preventing premature ethane elimination. A deviation from the route from 4 to 7 yields [Ru(eta(2)-BH(4))(COEt)(PMe(2)Ph)(3)], 6, but does not prevent ultimate conversion to 7. Modification of the treatment of 4 yields an isomer of 7, 10. Both isomers eliminate ethane at temperatures above 250 K: the immediate product of elimination, thought to be [Ru(CO)(PMe(2)Ph)(3)], 11, can be trapped as [Ru(CO)(PMe(2)Ph)(4)], 12, [Ru(CO)H(2)(PMe(2)Ph)(3)], 3a, or [Ru(CO)(C[triple bond]CCMe(3))H(PMe(2)Ph)(3)], 13. The elimination is a simple first-order process with negative DeltaS(++) and (for 7) a normal kinetic isotope effect (k(H)/k(D)= 2.5 at 287.9 K). These results, coupled with labelling studies, rule out a rapid equilibrium with a [sigma]-ethane intermediate prior to ethane loss.  相似文献   

20.
The tetrakis(trimethylphosphine) molybdenum nitrosyl hydrido complex trans-Mo(PMe(3))(4)(H)(NO) (2) and the related deuteride complex trans-Mo(PMe(3))(4)(D)(NO) (2a) were prepared from trans-Mo(PMe(3))(4)(Cl)(NO) (1). From (2)H T(1 min) measurements and solid-state (2)H NMR the bond ionicities of 2a could be determined and were found to be 80.0% and 75.3%, respectively, indicating a very polar Mo--D bond. The enhanced hydridicity of 2 is reflected in its very high propensity to undergo hydride transfer reactions. 2 was thus reacted with acetone, acetophenone, and benzophenone to afford the corresponding alkoxide complexes trans-Mo(NO)(PMe(3))(4)(OCHR'R') (R' = R' = Me (3); R' = Me, R' = Ph (4); R' = R' = Ph (5)). The reaction of 2 with CO(2) led to the formation of the formato-O-complex Mo(NO)(OCHO)(PMe(3))(4) (6). The reaction of with HOSO(2)CF(3) produced the anion coordinated complex Mo(NO)(PMe(3))(4)(OSO(2)CF(3)) (7), and the reaction with [H(Et(2)O)(2)][BAr(F)(4)] with an excess of PMe(3) produced the pentakis(trimethylphosphine) coordinated compound [Mo(NO)(PMe(3))(5)][BAr(F)(4)] (8). Imine insertions into the Mo-H bond of 2 were also accomplished. PhCH[double bond, length as m-dash]NPh (N-benzylideneaniline) and C(10)H(7)CH=NPh (N-1-naphthylideneaniline) afforded the amido compounds Mo(NO)(PMe(3))(4)[NR'(CH(2)R')] (R' = R' = Ph (9), R' = Ph, R' = naphthyl (11)). 9 could not be obtained in pure form, however, its structure was assigned by spectroscopic means. At room temperature 11 reacted further to lose one PMe(3) forming 12 (Mo(NO)PMe(3))(3)[N(Ph)CH(2)C(10)H(6))]) with agostic stabilization. In a subsequent step oxidative addition of the agostic naphthyl C-H bond to the molybdenum centre occurred. Then hydrogen migration took place giving the chelate amine complex Mo(NO)(PMe(3))(3)[NH(Ph)(CH(2)C(10)H(6))] (15). The insertion reaction of 2 with C(10)H(7)N=CHPh led to formation of the agostic compound Mo(NO)(PMe(3))(3)[N(CH(2)Ph)(C(10)H(7))] (10). Based on the knowledge of facile formation of agostic compounds the catalytic hydrogenation of C(10)H(7)N=CHPh and PhN=CHC(10)H(7) with 2 (5 mol%) was tested. The best conversion rates were obtained in the presence of an excess of PMe(3), which were 18.4% and 100% for C(10)H(7)N=CHPh and PhN=CHC(10)H(7), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号