首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method of calculation of average heat capacities of phase transformation products of complex oxides is suggested. The method takes into account the physical state of products and the increase in the heat capacities of products due to the change of entropy at a phase transformation. Average heat capacities of products formed in a congruous melting of compounds (YCuO2 and Y4Ba3O9), in an incongruous melting of compounds (Y2Cu2O5, BaCuO2, BaCu2O2, Y2BaCuO5, YBa2Cu3O7, YBa2Cu3O6) and in a decomposition in a crystalline state of compounds (Y2BaO4, Y2Ba2O5, Y2Ba4O7, Ba2CuO3, Ba3Cu5O8, YBa2Cu3.5O7.5, YBa2Cu4O8, YBa2Cu5O9) was estimated by using three methods.  相似文献   

2.
Reactivity of FeVO4 towards Ni2V2O7 and Ni3V2O8 in the solid state was investigated. On the base of XRD and DTA results, phase diagrams in subsolidus area of the FeVO4-Ni2V2O7 and FeVO4-Ni3V2O8 intersections of the ternary system NiO-V2O5-Fe2O3 have been worked out and the phase diagram of this ternary system in subsolidus area in the whole component concentration range has been verified. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
In this work we address the optimization of mixed conductivity in fluorite compounds based on zirconia. Phase relations of the new systems YbO1.5-NbO2.5-ZrO2, and CaO-NbO2.5-ZrO2 are presented. The limit of the cubic defect fluorite phase in YbO1.5-NbO2.5-ZrO2 closely resembles that of the system YO1.5-NbO2.5-ZrO2, whilst in CaO-NbO2.5-ZrO2 is narrow extending to include composition Ca0.255Nb0.15Zr0.595O1.82 at 1500°C. The influence of dopant ion size, charge and composition on ionic conduction is assessed and parallels are drawn with the systems YO1.5-NbO2.5-ZrO2 and YO1.5-TiO2-ZrO2. Comparison of these results with published data on the Ti containing systems CaO-TiO2-ZrO2, GdO1.5-TiO2-ZrO2 shows that the highest mixed conducting compositions can only be offered in the system YO1.5-TiO2-ZrO2 out of all the systems here studied.  相似文献   

4.
Syntheses of diols of structure [HOCH2CH2S]2(CH2)n in 86–95% yield from the sodium salt of 2-mercaptoethanol and Br(CH2)nBr (n = 1 to 5) or in 60–90% yield from 2-chloroethanol and NaS(CH2)nSNa (n = 2 to 5) are described. The diol [HOCH2CH2SCH2CH2]2O was prepared in 82% yield from the sodium salt of 2-mercaptoethanol and [ClCH2CH2]2O, and in 88% yield from 2-chloroethanol and [HSCH2CH2]2O. Mono- and bis-sulfoxides and bis-sulfones of these species were prepared in generally high yield by treatment with an equivalent of KIO4 in aqueous methanol, two equivalents of NaIO4 in aqueous methanol, or four equivalents of H2O2 in trifluoroacetic acid respectively. The compounds are important analytical standards for investigating the fate of the chemical warfare agents sesquimustard Q and oxygen mustard T in environmental samples.  相似文献   

5.
Trifluoromethylation of a higher fullerene mixture with CF3I was performed in ampoules at 550 °C. HPLC separation followed by crystal growth and X‐ray diffraction study resulted in the structure elucidation of nine CF3 derivatives of D2d‐C84 (isomer 23). The molecular structures of C84(23)(CF3)4, C84(23)(CF3)8, C84(23)(CF3)10, C84(23)(CF3)12, two isomers of C84(23)(CF3)14, two isomers of C84(23)(CF3)16, and C84(23)(CF3)18 were discussed in terms of their addition patterns and the relative formation energies. Extensive theoretical DFT calculations were performed to identify the most stable molecular structures. It was found that the addition of CF3 groups to the C84(23) fullerene is governed by two main rules: no additions in positions of triple hexagon junctions and predominantly para additions in C6(CF3)2 hexagons on the fullerene cage. The only exception with an isolated CF3 group in C84(23)(CF3)12 is discussed in more detail.  相似文献   

6.
The accelerated formation of 2,3-diphenylquinoxalines in microdroplets generated in a nebulizer has been investigated by competition experiments in which equimolar quantities of 1,2-phenylenediamine, C6H4(NH2)2, and a 4-substituted homologue, XC6H3(NH2)2 [X = F, Cl, Br, CH3, CH3O, CO2CH3, CF3, CN or NO2], or a 4,5-disubstituted homologue, X2C6H2(NH2)2 [X = F, Cl, Br, or CH3], compete to condense with benzil, (C6H5CO)2. Electron-donating substituents (X = CH3 and CH3O) accelerate the reaction; in contrast, electron-attracting substituents (X = F, Cl, Br and particularly CO2CH3, CN, CF3 and NO2) retard it. A structure–reactivity relationship in the form of a Hammett correlation has been found by analyzing the ratio of 2,3-diphenylquinoxaline and the corresponding substituted-2,3-diphenylquinoxaline, giving a ρ value of −0.96, thus confirming that the electron density in the aromatic ring of the phenylenediamine component is reduced in the rate-limiting step in this accelerated condensation. This correlation shows that the phenylenediamine acts as a nucleophile in the reaction.  相似文献   

7.
Treatment of {HNR}2C10H6‐1, 8 [R = SiMe3 ( 1 ), CH2But ( 2 )] with Sn[N(SiMe3)2]2 afforded the cyclic stannylene Sn[{NR}2C10H6‐1, 8] [R = SiMe3 ( 3 ), CH2But ( 4 )]. From 3 and SnCl2 in THF and crystallisation from toluene, the product was the crystalline tetracyclic compound ( 5 ) as the (toluene)0.5‐solvate. Reaction of 4 with the silylene Si[(NCH2But)2C6H4‐1, 2] ( 6 ) [abbreviated as Si(NN)] in benzene and crystallisation in presence of Et2O furnished the crystalline tricyclic complex Sn[{Si(NCH2But)2C6H4‐1′, 2′}2‐{(NCH2But)2C10H6‐1, 8}] ( 7 ) as the Et2O‐solvate. Complex 5 slowly dissociated into its factors 3 and SnCl2 in toluene, but rapidly in THF. Solutions of 7 in C6D6, C7D8 or THF‐d8, studied by multinuclear, variable temperature NMR spectroscopy, revealed the presence of an equilibrium between 8 (an isomer of 7 , in which the skeletal atoms of the eight‐membered ring were , rather than the of 7 ) and 4 + 2 Si(NN), with 8 dominant in PhMe but not in THF; additionally 8 was shown to be fluxional and solutions of 8 in C6D6 or C7D8 decomposed to give the silane Si(NN)[(NCH2But)2C10H6‐1, 8], 6 and Sn metal. The X‐ray structures of 3 , 5 and 7 are presented.  相似文献   

8.
The 124 superconductor YBa2Cu4O8 was prepared from the oxalate precursor Y2(C2O4)3. ·4BaC2O4·8CuC2O4·xH2O at one atmosphere oxygen pressure. In O2 the precursor decomposes in one step at 300°C and more gradually (300°–600°C) in Ar. The stability of the superconductor is strongly dependent on the gas atmosphere: in O2 and in air there is no significant weight change as long as the temperature does not exceed 800°C, whereas in a 1% O2-99%N2 mixture decomposition starts at about 670°C with the formation of CuO and YBa2Cu3Ox withx<7. The reduction of YBa2Cu4O8 in a 5% H2-95% Ar mixture takes place in at least four major steps with formation of products such as Y2O3, BaO, Cu2O, Cu, BaY2O4 and Ba4Y2O7.  相似文献   

9.
The compounds [2-(Me2NCH2)C6H4]2SbL (L = ONO2 ( 2 ), OSO2CF3 ( 3 )) and [PhCH2N(CH2C6H4)2]SbL (L = ONO2 ( 5 ), OSO2CF3 ( 6 )) were prepared by reacting [2-(Me2NCH2)C6H4]2SbCl ( 1 ) and [PhCH2N(CH2C6H4)2]SbCl ( 4 ), respectively, with the appropriate silver(I) salt in a 1:1 molar ratio. The new species 2 – 6 were structurally characterized in solution using multinuclear NMR and in the solid state using infrared spectroscopy. The solid-state structures for compounds 2 , 4 and 6, as well as for the hydrolysis ionic product [{2-(Me2N+HCH2)C6H4}{2-(Me2NCH2)C6H4}SbOH][CF3SO3] ( 3h ) were determined using single-crystal X-ray diffraction. Medium to strong intramolecular N→ Sb interactions were observed in all these four compounds, thus resulting in hypercoordinated organoantimony(III) species 14-Sb-6 in 2 and 10-Sb-4 in the cation of 3h and in 4 and 6 . Compounds 1 – 6 and the starting amines PhCH2NMe2 and PhCH2N(CH2C6H4Br-2)2 were investigated as catalysts in the Henry (nitroaldol) addition of nitromethane to benzaldehyde. The activity of compounds 1 – 6 resulted as an effect of the cooperation of the positively charged antimony with the negatively charged nitrogen.  相似文献   

10.
A series of novel molybdenum(V) and tungsten(VI) oxoazides was prepared starting from [MOF4] (M=Mo, W) and Me3SiN3. While [WO(N3)4] was formed through fluoride–azide exchange in the reaction of Me3SiN3 with WOF4 in SO2 solution, the reaction with MoOF4 resulted in a reduction of MoVI to MoV and formation of [MoO(N3)3]. Carried out in acetonitrile solution, these reactions resulted in the isolation of the corresponding adducts [MoO(N3)3?2 CH3CN] and [WO(N3)4?CH3CN]. Subsequent reactions of [MoO(N3)3] with 2,2′‐bipyridine and [PPh4][N3] resulted in the formation and isolation of [(bipy)MoO(N3)3] and [PPh4]2[MoO(N3)5], respectively. Most molybdenum(V) and tungsten(VI) oxoazides were fully characterized by their vibrational spectra, impact, friction and thermal sensitivity data and, in the case of [WO(N3)4?CH3CN], [(bipy)MoO(N3)3], and [PPh4]2[MoO(N3)5], by their X‐ray crystal structures.  相似文献   

11.
The reactivity of bis(fluoroalkyl) phosphorochloridates to nucleophiles is summarised. Previous data and the results described here indicate that reactivities decrease in the order: amines>alcohols>thiols. The synthesis of CF3CH2OP(O)(SEt)2 in 30% yield was accomplished by treating CF3CH2OP(O)Cl2 with two molar equivalents of EtSH and Et3N in ether. The chloridates (CF3CH2O)2P(O)Cl and (C2F5CH2O)2P(O)Cl did not react with MeSH in ether at −78 °C or when heated with Pb(SMe)2 in benzene. Ethanethiol and propanethiol reacted with fluorinated chloridates in the presence of triethylamine to give thiolates (RFO)2P(O)SR in 13-41% yield where RF was CF3CH2, C2F5CH2, C3F7CH2 or (CF3)2CH and R was Et or n-Pr. Similarly, reaction of phosphorobromidates (RFCH2O)2P(O)Br, made by brominating the corresponding bis(fluoroalkyl) H-phosphonates, with benzenethiol gave derivatives (RFCH2O)2P(O)SPh in 43 and 46% yield where RF was CF3 and C2F5, respectively. Treatment of the chloridothiolate Cl(EtO)P(O)SMe, prepared in two steps from triethyl phosphite, with fluoroalcohols and triethylamine in ether gave species RFO(EtO)P(O)SMe in 62-74% yield where RF was CF3CH2, C2F5CH2, C3F7CH2 or (CF3)2CH. The reactions of bis(trifluoroethyl) phosphorochloridate with 2-mercaptoethanol, 3-mercaptopropanol and ethane-1,2-dithiol gave several unexpected products whose structures were tentatively assigned.  相似文献   

12.
Reactivity in the solid state between CoWO4 and some rare-earth metal tungstates RE2WO6 (RE = Sm, Eu, Gd) was investigated by the XRD method. Two families of new isostructural cobalt and rare-earth metal tungstates, Co2RE2W3O14 and CoRE4W3O16, were synthesized. The Co2RE2W3O14 phases are formed by heating in air the CoWO4 and RE2WO6 compounds mixed at the molar ratio 2:1, while the CoRE4W3O16 phases are synthesized at the molar ratio of CoWO4/RE2WO6 equals to 1:2. The Co2RE2W3O14 phases as well as the CoRE4W3O16 compounds crystallize in the orthorhombic system. The Co2RE2W3O14 and CoRE4W3O16 compound melt above 1150 °C. A melting manner of the Co2RE2W3O14 and CoRE4W3O16 compounds was determined in an inert atmosphere. The formation of CoWO4−x phase was observed during heating in an inert atmosphere.  相似文献   

13.
The interaction of hydrazine (N2H4) molecule with pristine and Si-doped aluminum nitride (Al12N12) nano-cage was investigated using the density functional theory calculations. The adsorption energy of N2H4 on pristine Al12N12 in different configurations was about –1.67 and –1.64 eV with slight changes in its electronic structure. The results showed that the pristine nano-cage can be used as a chemical adsorbent for toxic hydrazine in nature. Compared with very low sensitivity between N2H4 and Al12N12 nano-cage, N2H4 molecule exhibits high sensitivity toward Si-doped Al12N12 nano-cage so that the energy gap of the Si-doped Al12N12 nano-cage is changed by about 31.86% and 37.61% for different configurations in the SiAl model and by about 26.10% in the SiN model after the adsorption process. On the other hand, in comparison with the SiAl model, the adsorption energy of N2H4 on the SiN model is less than that on the SiAl model to hinder the recovery of the nano-cage. As a result, the SiN Al12N11 is anticipated to be a potential novel sensor for detecting the presence of N2H4 molecule.  相似文献   

14.
Sintering processes in the Y2O3–Al2O3–B2 O3 system and its subsystems (Y2O3–B2O3 and Al2 O3–B2O3) have been investigated by using combined DTA and XRD measurements to get a better understanding of solid state chemical changes resulting in the formation of yttrium aluminum borate (YAl3(BO3)4, YAB) phase and to study the possible role and contribution of various simple borates formed also in the former processes. Two new exothermic heat effects of YBO3 formation have been detected by DTA in the Y2O3–B2O3 system between 720 and 980°C. In the Al2O3–B2O3 system a new experimental XRD profile of Al4B2O9 was observed. Formation of these borates seems to promote the nucleation of double borate YAB below 1000°C. Conversion of Al4B2O9 to Al18B4 O33 was observed after a long term (10 h) sintering at 1050°C. Similarly, an increased formation of YAB has been observed as a product of the sintering reaction between YBO3 and Al18B4O33 at 1150°C. The two latter single borates are found to be identical with the high temperature decomposition products of YAB. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
The investigations by XRD, DTA/TG and IR methods show that two compounds: ZnSb2O6 and Zn7Sb2O12 are formed in the ZnO-α-Sb2O4 system in air. Oxygen contained in the air participates in the synthesis of these compounds. ZnSb2O6 was observed as an intermediate phase, during the Zn7Sb2O12 synthesis. The temperature of the β→α-Zn7Sb2O12 transition was fixed at 1225±10°C. The mechanisms of the reactions of ZnSb2O6 and Zn7Sb2O12 thermal decomposition have been proposed. The IR studies of α and β-Zn7Sb2O12 have initially indicated that the structures of both polymorphous forms differ in the reciprocal connection of the SbO6 and ZnO6 octahedra and the ZnO4 tetrahedra.  相似文献   

16.
Semi-empirical molecular orbital calculations were carried out for the compounds (C2H5)3As, (C2H5)3Ga and RAsH2 (R = C2H5, i-C3H7, i-C4H9, and t-C4H9) by using the CNDO/2-U program, and their capability of β-elimination reaction is compared on the basis of the torsion energy to the transition state, electrostatic interactions and orbital overlapping between the central atom and the β-hydrogen, and bond order of the metal-carbon, and carbon-hydrogen bond. In the comparison of (C2H5)3As with (C2H5)3Ga, we found that the β-elimination of (C2H5)3As could hardly be expected to take place in the thermal decomposition. The capability of β-elimination would be smaller in C2H5AsH2 than that in (C2H5)3As. Moreover when the ethyl group is replaced by a t-butyl group in RAsH2, the β-elimination reaction appears to become more difficult and a large possibility for a radical process is suggested.  相似文献   

17.
The copper hydride clusters [Cu14H12(phen)6(PPh3)4][X]2 (X=Cl or OTf; OTf=trifluoromethanesulfonate, phen=1,10‐phenanthroline) are obtained in good yields by the reaction of [(Ph3P)CuH]6 with phen, in the presence of a halide or pseudohalide source. The complex [Cu14H12(phen)6(PPh3)4][Cl]2 reacts with CO2 in CH2Cl2, in the presence of excess Ph3P, to form the formate complex [(Ph3P)2Cu(κ2‐O2CH)], along with [(phen)(Ph3P)CuCl].  相似文献   

18.
含O2高温高压CO2环境中3Cr钢腐蚀产物膜特征   总被引:1,自引:0,他引:1  
采用高温高压反应釜分别开展3Cr钢在CO2和O2共存、单独CO2和单独O2三种气体条件下的腐蚀实验,利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、能量色散X射线能谱(EDS)和电化学方法研究了3Cr钢在高温高压含有O2的CO2环境中的腐蚀产物膜特征.结果表明,在含有O2的CO2的条件下,3Cr钢表面腐蚀产物膜疏松多孔,主要成分为FeCO3、Fe3O4和Fe2O3,腐蚀产物中未见明显Cr元素富集,3Cr钢表现出点蚀的腐蚀形态.3Cr钢在高温高压含O2的CO2腐蚀条件下内外膜层电阻(Rf1、Rf2)和电荷传递电阻Rt均比仅含有CO2腐蚀环境的低,双电层电容(Cdl)和内外膜层电容(Cf1、Cf2)均比仅含有CO2腐蚀环境的高.含有O2的CO2条件下,其保护性显著低于单一CO2条件下形成的腐蚀产物膜.提出了在含O2的CO2气体条件下,3Cr钢表面存在由多种物质组成的腐蚀产物,这导致腐蚀产物疏松多孔,不会形成单一CO2条件下存在的显著提高腐蚀产物膜保护性的Cr(OH)3层,从而促进了3Cr钢的析氢腐蚀和酸性介质中的吸氧腐蚀的机理.  相似文献   

19.
The interaction of the clathrate Pt6Cl12 · 0.1 EtCl · 5.7H2O with RCN nitriles results in cis-[Pt(PhCH2CN)2Cl2] and in [Pt(RCN)2Cl2] (R = CH2CO2Et, Ph) complexes as a mixture of cis- and trans-isomers which separated and characterized. Cis-[Pt(MeCN)2Cl2] has been synthesized using a well known technique of K2[PtCl4] interaction with acetonitrile in water. Heating cis-[Pt(RCN)2Cl2] (R = Me, CH2Ph, CH2CO2Et) in the solid phase leads to cis-trans isomerization. In case of cis-[Pt(PhCN)2Cl2] thermal conversion results in trans-[Pt(PhCN)2Cl2] but the process of geometrical isomerizations accompained by a considerable decomposition of starting material and/or final products. Boiling of cis-[Pt(PhCH2CN2)Cl2] in mixture of EtNO2? PhCH2CN or cis-[Pt(EtCO2CH2CN)2Cl2] in MeNO2 or EtNO2 solutions results in complete cis-trans conversion. Similarily heating of cis-[Pt(RCN)2Cl2] (R = Me, Ph) in solution produces an equilibrium mixture of cis- and transisomers.  相似文献   

20.
The present study explores the attractiveness of combining flow-injection (FI) with lead hydride generation atomic absorption spectrometry (AAS) to improve the selectivity and sensitivity of analysis. Lead hydride was generated in three acid-oxidant media: HNO3-(NH4)2S2O8, lactic acid-K2Cr2O7 and HNO3-H2O2. The effect of chemical parameters (acid-oxidant concentration and NaBH4 concentration) was investigated and the performance of each generation medium in terms of interferences, sensitivity and detection limits was compared with that obtained in batch mode. In all cases improved sensitivity (HNO3-H2O2, 0.8 ng Pb; lactic acid-K2Cr2O7, 0.2 ng Pb; (NH4)2S2O8-HNO3, 4ng Pb) was obtained, most notably in HNO3-H2O2, which provided 12 times higher sensitivity than in batch mode and sharper absorption peaks. Furthermore, interference by Cu and Ni was lower in the proposed FI-HG system. Compared with the batch mode, about 10 to 100 times higher concentrations of interferent are tolerated in the sample. The use of FI also allows work at a lower NaBH4 concentration. The method was applied to the determination of lead in water samples with a sampling frequency of 180 samples per hour. In terms of both sensitivity and freedom from interferences, lactic acid-K2Cr2O7 was the best of the generation media tested.On leave from the School of Environmental Studies, Jadavpur University, Calcutta 700032, India  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号