首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Hemodynamic-based functional magnetic resonance imaging (fMRI) techniques provide a great utility for noninvasive functional brain mapping. However, because the hemodynamic signals reflect underlying neural activity indirectly, characterization of these signals following brain activation is essential for experimental design and data interpretation. In this report, the linear (or nonlinear) responses to neuronal activation of three hemodynamic parameters based primarily on changes of cerebral blood volume, blood flow and blood oxygenation were investigated by testing these hemodynamic responses' additivity property. Using a recently developed fMRI technique that acquires vascular space occupancy (VASO), arterial spin labeling (ASL) perfusion and blood oxygenation level-dependent (BOLD) signals simultaneously, the additivity property of the three hemodynamic responses in human visual cortex was assessed using various visual stimulus durations. Experiments on healthy volunteers showed that all three hemodynamic-weighted signals responded nonlinearly to stimulus durations less than 4 s, with the degree of nonlinearity becoming more severe as the stimulus duration decreased. Vascular space occupancy and ASL perfusion signals showed similar nonlinearity properties, whereas the BOLD signal was the most nonlinear. These data suggest that caution should be taken in the interpretation of hemodynamic-based signals in fMRI.  相似文献   

2.
基于脑血氧水平依赖(BOLD)对比的功能磁共振成像(fMRI)方法是研究脑功能活动的一种重要的无损伤探测手段,BOLD的机制及它与脑神经活动关系一直是国际上十分活跃的研究领域,尤其是在实验研究方面. 视觉刺激所引起的脑的初级视皮层(V1) 的BOLD响应的时间特性已有较多的研究,但是在这些研究中,有的结论认为BOLD对视觉刺激的响应是线性的,有的结论却是相反的. 我们采用事件关联型核磁共振功能成像(ER-fMRI)方法,研究不同的短暂视觉刺激持续时间下的BOLD响应,得到了视觉刺激下的脑激活图. 同时找出了视觉刺激时间分别是1、2、3、4、5和6 s的V1区的BOLD响应曲线,并初步显示出BOLD响应与刺激持续时间的线性关系.  相似文献   

3.
The connectivity between functionally distinct areas in the human brain is unknown because of the limitations posed by current postmortem anatomical labeling techniques. Diffusion tensor imaging (DTI) has previously been used to define large white matter tracts based on well-known anatomical landmarks in the living human brain. In the present study, we used DTI coupled with functional magnetic resonance imaging (fMRI) to assess neuronal connections between human striate and functionally defined extrastriate ventral cortical areas. Functional areas were identified with conventional fMRI mapping procedures and then used as seeding points in a DTI analysis to ascertain connectivity patterns between cortical areas, thus yielding the pattern of connections between human occipitoventral visual areas in vivo.  相似文献   

4.
ObjectiveTo determine if the Argus II retinal prosthesis can operate during functional MRI (fMRI) and diffusion tensor imaging (DTI) acquisitions and if currents induced in the prosthesis by imaging are at safe levels.Materials and methodsOne Argus II retinal prosthesis was modified to enable current measurements during imaging. Active electronics were modified to enable operation during scans. Induced current was measured during diagnostic scans, which were previously shown to be safe for implanted patients, and during fMRI and DTI scans. All measurements were performed using an ASTM phantom to ensure reproducible placement.ResultsThe prosthesis was able to maintain communication with the external RF coil during the fMRI and DTI scans except briefly during pre-scans. Current levels induced during fMRI and DTI scans were consistently below those measured during diagnostic scans.ConclusionsfMRI and DTI may be safely performed while the Argus II retinal prosthesis is operating.  相似文献   

5.
Functional magnetic resonance imaging (fMRI) studies have shown dysfunction in key areas associated with the thalamocortical circuit in patients with schizophrenia. This study examined the functional connectivity involving the frontal-thalamic circuitry during a spatial focusing-of-attention task in 18 unmedicated patients with schizophrenia and 38 healthy controls. Functional connectivity was analyzed by assigning seed regions (in the thalamic nuclei (mediodorsal nucleus (MDN), pulvinar, anterior nucleus (AN)), the dorsolateral prefrontal cortex (Brodmann areas 9 and 46), and the caudate), and correlating their respective activity with that in the non-seed regions voxel-wise. Functional connectivity analysis demonstrated that functional connectivity was significantly impaired in patients, e.g., between the right pulvinar and regions such as the prefrontal and temporal cortices and the cerebellum. On the other hand, enhanced functional connectivity was found in patients e.g., between the AN and regions such as the prefrontal and temporal cortices. In addition, the patients had significantly lower task performance and less (but non-significant) brain activation than those of controls. These results revealed disturbed functional integration in schizophrenia, and suggested that the functional connectivity abnormalities in the thalamocortical circuitry, especially the frontal-thalamic circuitry, may underlie the attention deficits in schizophrenia patients. Further, this study suggested that functional connectivity analysis might be more sensitive than brain activation analysis in detecting the functional abnormalities in schizophrenia.  相似文献   

6.
Hemodynamic-based functional magnetic resonance imaging (fMRI) techniques have proven to be extremely robust and sensitive methods for noninvasive detection and mapping of human brain activation. Nevertheless, limitations in temporal and spatial resolution as well as interpretation remain because hemodynamic changes accompanying brain activation are relatively sluggish and variable and therefore imprecise measures of neuronal activity. A hope among brain imagers would be to possess a technique that would allow direct mapping of brain activity with spatial resolution on the order of a cortical column and temporal resolution on the order of an action potential or at least a postsynaptic potential. Recent efforts in understanding the direct effects of neuronal activity on MRI signal have provided some degree of hope for those who want a more precise noninvasive brain activation mapping technique than fMRI as we know it now. While the manner in which electrical currents influence MRI signal is well understood, the manner in which neuronal firing spatially and temporally integrates on the spatial scale of an MRI voxel to produce a magnetic field shift and subsequently an NMR phase and/or magnitude change is not well understood. It is also not established that this field shift would be large or long enough in duration to be detected. The objective of this paper is to provide a perspective of the work that has been performed towards the direction of achieving direct neuronal current imaging with MRI. A specific goal is to further clarify what is understood about the theoretical and practical possibilities of neuronal current imaging. Specifically discussed are modeling efforts, phantom studies, in vitro studies, and human studies.  相似文献   

7.
The human brain response to a wide range of visual stimulus rates presented over a prolonged time period has been investigated by various neuroimaging techniques. However, to date, no imaging study has been performed to study the dynamic human brain response to various stimulus rates when presented in a short time. This report describes activation in the human brain due to brief visual stimulus presentation (1 s) for stimulus rates varying from 1 to 20 Hz using event-related functional MRI (fMRI). Our results show that the amplitude of the fMRI response increases with the stimulus frequency and plateaus at 6 Hz. This finding differs slightly from the results of previous blocked task paradigm experiments (with a longer time of stimulus presentation), in which the response peaks at approximately 8 Hz and then decreases. Our results are in close agreement with previously published psychophysical studies, suggesting that the fMRI signal in this experiment is indicative of cortical activity related to visual processing.  相似文献   

8.

Background  

It is generally believed that activation in functional magnetic resonance imaging (fMRI) is restricted to gray matter. Despite this, a number of studies have reported white matter activation, particularly when the corpus callosum is targeted using interhemispheric transfer tasks. These findings suggest that fMRI signals may not be neatly confined to gray matter tissue. In the current experiment, 4 T fMRI was employed to evaluate whether it is possible to detect white matter activation. We used an interhemispheric transfer task modelled after neurological studies of callosal disconnection. It was hypothesized that white matter activation could be detected using fMRI.  相似文献   

9.
In recent years, more and more emphasis has been placed on the investigation of sex differences in the human brain. Noninvasive neuroimaging techniques represent an essential tool in the effort to better understand the effects of sex on both brain structure and function. In this review, we provide a comprehensive summary of the findings that were collected in human neuroimaging studies in vivo thus far: we explore sexual dimorphism in the human brain at the level of (1) brain structure, in both gray and white matter, observed by voxel-based morphometry (VBM) and diffusion tensor imaging (DTI), respectively; (2) baseline neural activity, studied using resting-state functional magnetic resonance imaging (rs-fMRI) and positron emission tomography (PET); (3) neurochemistry, visualized by means of neuroreceptor ligand PET; and (4) task-related neural activation, investigated using fMRI. Functional MRI findings from the literature are complemented by our own meta-analysis of fMRI studies on sex-specific differences in human emotional processing. Specifically, we used activation likelihood estimation (ALE) to provide a quantitative approach to mapping the consistency of neural networks involved in emotional processing across studies. The presented evidence for sex-specific differences in neural structure and function highlights the importance of modeling sex as a contributing factor in the analysis of brain-related data.  相似文献   

10.
Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are noninvasive neuroimaging tools which can be used to measure brain activity with excellent temporal and spatial resolution, respectively. By combining the neural and hemodynamic recordings from these modalities, we can gain better insight into how and where the brain processes complex stimuli, which may be especially useful in patients with different neural diseases. However, due to their vastly different spatial and temporal resolutions, the integration of EEG and fMRI recordings is not always straightforward. One fundamental obstacle has been that paradigms used for EEG experiments usually rely on event-related paradigms, while fMRI is not limited in this regard. Therefore, here we ask whether one can reliably localize stimulus-driven EEG activity using the continuously varying feature intensities occurring in natural movie stimuli presented over relatively long periods of time. Specifically, we asked whether stimulus-driven aspects in the EEG signal would be co-localized with the corresponding stimulus-driven BOLD signal during free viewing of a movie. Secondly, we wanted to integrate the EEG signal directly with the BOLD signal, by estimating the underlying impulse response function (IRF) that relates the BOLD signal to the underlying current density in the primary visual area (V1). We made sequential fMRI and 64-channel EEG recordings in seven subjects who passively watched 2-min-long segments of a James Bond movie. To analyze EEG data in this natural setting, we developed a method based on independent component analysis (ICA) to reject EEG artifacts due to blinks, subject movement, etc., in a way unbiased by human judgment. We then calculated the EEG source strength of this artifact-free data at each time point of the movie within the entire brain volume using low-resolution electromagnetic tomography (LORETA). This provided for every voxel in the brain (i.e., in 3D space) an estimate of the current density at every time point. We then carried out a correlation between the time series of visual contrast changes in the movie with that of EEG voxels. We found the most significant correlations in visual area V1, just as seen in previous fMRI studies (Bartels A, Zeki, S, Logothetis NK. Natural vision reveals regional specialization to local motion and to contrast-invariant, global flow in the human brain. Cereb Cortex 2008;18(3):705–717), but on the time scale of milliseconds rather than of seconds. To obtain an estimate of how the EEG signal relates to the BOLD signal, we calculated the IRF between the BOLD signal and the estimated current density in area V1. We found that this IRF was very similar to that observed using combined intracortical recordings and fMRI experiments in nonhuman primates. Taken together, these findings open a new approach to noninvasive mapping of the brain. It allows, firstly, the localization of feature-selective brain areas during natural viewing conditions with the temporal resolution of EEG. Secondly, it provides a tool to assess EEG/BOLD transfer functions during processing of more natural stimuli. This is especially useful in combined EEG/fMRI experiments, where one can now potentially study neural-hemodynamic relationships across the whole brain volume in a noninvasive manner.  相似文献   

11.
Functional magnetic resonance imaging (fMRI) of the brain using blood oxygenation level dependent (BOLD) contrast relies on the changes of paramagnetic deoxyhemoglobin concentration, which affects brain parenchyma and draining venous vessels. These changes in deoxyhemoglobin concentration in venous vessels can also be monitored using a high-resolution susceptibility-based MR-venography technique. Four volunteers participated in the study in which functional MR-venograms were compared with conventional echo-planar imaging (EPI)-BOLD-fMRI. In all cases, small venous vessels could be identified close to the areas of activation detected by conventional fMRI. In the venograms, task performance (finger tapping) resulted in a loss of venous vessel contrast compared to the resting state, which is consistent with a local decrease of deoxyhemoglobin concentration. MR-venography allows a direct visualization of the BOLD-effect at high spatial resolution. In combination with conventional fMRI, this technique may help to separate the contribution of brain parenchyma and venous vessels in fMRI studies.  相似文献   

12.
The noninvasive imaging of the monkey auditory system with functional magnetic resonance imaging (fMRI) can bridge the gap between electrophysiological studies in monkeys and imaging studies in humans. Some of the recent imaging of monkey auditory cortical and subcortical structures relies on a technique of “sparse imaging,” which was developed in human studies to sidestep the negative influence of scanner noise by adding periods of silence in between volume acquisition. Among the various aspects that have gone into the ongoing optimization of fMRI of the monkey auditory cortex, replacing the more common continuous-imaging paradigm with sparse imaging seemed to us to make the most obvious difference in the amount of activity that we could reliably obtain from awake or anesthetized animals. Here, we directly compare the sparse- and continuous-imaging paradigms in anesthetized animals. We document a strikingly greater auditory response with sparse imaging, both quantitatively and qualitatively, which includes a more expansive and robust tonotopic organization. There were instances where continuous imaging could better reveal organizational properties that sparse imaging missed, such as aspects of the hierarchical organization of auditory cortex. We consider the choice of imaging paradigm as a key component in optimizing the fMRI of the monkey auditory cortex.  相似文献   

13.
By measuring the changes of magnetic resonance signals during a stimulation, the functional magnetic resonance imaging (fMRI) is able to localize the neural activation in the brain. In this report, we discuss the fMRI application of the spatial independent component analysis (spatial ICA), which maximizes statistical independence over spatial images. Included simulations show the possibility of the spatial ICA on discriminating asynchronous activations or different response patterns in an fMRI data set. An in vivo visual stimulation fMRI test was conducted, and the result shows a proper sum of the separated components as the final image is better than a single component, using fMRI data analysis by spatial ICA. Our result means that spatial ICA is a useful tool for the detection of different response activations and suggests that a proper sum of the separated independent components should be used for the imaging result of fMRI data processing.  相似文献   

14.
We studied the development of visual activation longitudinally in two infant monkeys aged 103-561 days using the BOLD fMRI technique under opiate anesthesia and compared the results with those obtained in three adult animals studied under identical conditions. Visual activation in primary visual cortex, V1, was strong and reliable in monkeys of the youngest and oldest ages, showing that functional imaging techniques give qualitatively similar results in infants and adults. Visual activation in extrastriate areas involved in processing motion (MT/V5) and form (V4) was not evident in the younger animals, but became more adult-like in the older animals. This delayed onset of measurable BOLD responses in extrastriate visual cortex may reflect delayed development of visual responses in these areas, although at this stage it is not possible to rule out either effects of anesthesia or of changes in cerebral vascular response mechanisms as the cause. The demonstration of visually evoked BOLD responses in young monkeys shows that the BOLD fMRI technique can usefully be employed to address functional questions of brain development.  相似文献   

15.
The objective of this study was to detect auditory cortical activation in non-sedated neonates employing functional magnetic resonance imaging (fMRI). Using echo-planar functional brain imaging, subjects were presented with a frequency-modulated pure tone; the BOLD signal response was mapped in 5 mm-thick slices running parallel to the superior temporal gyrus. Twenty healthy neonates (13 term, 7 preterm) at term and 4 adult control subjects. Blood oxygen level-dependent (BOLD) signal in response to auditory stimulus was detected in all 4 adults and in 14 of the 20 neonates. FMRI studies of adult subjects demonstrated increased signal in the superior temporal regions during auditory stimulation. In contrast, signal decreases were detected during auditory stimulation in 9 of 14 newborns with BOLD response. fMRI can be used to detect brain activation with auditory stimulation in human infants.  相似文献   

16.
In this paper, we review blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) studies addressing the neural correlates of touch, thermosensation, pain and the mechanisms of their cognitive modulation in healthy human subjects. There is evidence that fMRI signal changes can be elicited in the parietal cortex by stimulation of single mechanoceptive afferent fibers at suprathreshold intensities for conscious perception. Positive linear relationships between the amplitude or the spatial extents of BOLD fMRI signal changes, stimulus intensity and the perceived touch or pain intensity have been described in different brain areas. Some recent fMRI studies addressed the role of cortical areas in somatosensory perception by comparing the time course of cortical activity evoked by different kinds of stimuli with the temporal features of touch, heat or pain perception. Moreover, parametric single-trial functional MRI designs have been adopted in order to disentangle subprocesses within the nociceptive system.

Available evidence suggest that studies that combine fMRI with psychophysical methods may provide a valuable approach for understanding complex perceptual mechanisms and top-down modulation of the somatosensory system by cognitive factors specifically related to selective attention and to anticipation. The brain networks underlying somatosensory perception are complex and highly distributed. A deeper understanding of perceptual-related brain mechanisms therefore requires new approaches suited to investigate the spatial and temporal dynamics of activation in different brain regions and their functional interaction.  相似文献   


17.
Surface-based functional magnetic resonance imaging (fMRI) analysis is more sensitive and accurate than volume-based analysis for detecting neural activation. However, these advantages are less important in practical fMRI experiments with commonly used 1.5-T magnetic resonance devices because of the resolution gap between the echo planar imaging data and the cortical surface models. We expected high-resolution segmented partial brain echo planar imaging (EPI) data to overcome this problem, and the activation patterns of the high-resolution data could be different from the low-resolution data. For the practical applications of surface-based fMRI analysis using segmented EPI techniques, the effects of some important factors (e.g., activation patterns, registration and local distortions) should be intensively evaluated because the results of surface-based fMRI analyses could be influenced by them. In this study, we demonstrated the difference between activations detected from low-resolution EPI data, which were covering whole brain, and high-resolution segmented EPI data covering partial brain by volume- and surface-based analysis methods. First, we compared the activation maps of low- and high-resolution EPI datasets detected by volume- and surface-based analyses, with the spatial patterns of activation clusters, and analyzed the distributions of activations in occipital lobes. We also analyzed the high-resolution EPI data covering motor areas and fusiform gyri of human brain, and presented the differences of activations detected by volume- and surface-based methods.  相似文献   

18.
The analysis of functional magnetic resonance imaging (fMRI) data involves multiple stages of data pre-processing before the activation can be statistically detected. Spatial smoothing is a very common pre-processing step in the analysis of functional brain imaging data. This study presents a broad perspective on the influence of spatial smoothing on fMRI group activation results. The data obtained from 20 volunteers during a visual oddball task were used for this study. Spatial smoothing using an isotropic gaussian filter kernel with full width at half maximum (FWHM) sizes 2 to 30 mm with a step of 2 mm was applied in two levels — smoothing of fMRI data and/or smoothing of single-subject contrast files prior to general linear model random-effects group analysis generating statistical parametric maps. Five regions of interest were defined, and several parameters (coordinates of nearest local maxima, t value, corrected threshold, effect size, residual values, etc.) were evaluated to examine the effects of spatial smoothing. The optimal filter size for group analysis is discussed according to various criteria. For our experiment, the optimal FWHM is about 8 mm. We can conclude that for robust experiments and an adequate number of subjects in the study, the optimal FWHM for single-subject inference is similar to that for group inference (about 8 mm, according to spatial resolution). For less robust experiments and fewer subjects in the study, a higher FWHM would be optimal for group inference than for single-subject inferences.  相似文献   

19.
We report studies of the nonlinear nature of blood oxygen level-dependent (BOLD) responses to short transient deactivations in human visual cortex. Both functional magnetic resonance imaging (fMRI) and near-infrared spectroscopy (NIRS) have been used to compare and contrast the hemodynamic response functions (HRFs) associated with transient activation and deactivation in primary visual cortex. We show that signal decreases for short duration deactivations are smaller than corresponding signal increases in activation studies. Moreover, the standard balloon model of BOLD effects may be modified to account for the observed nonlinear nature of deactivations by appropriate changes to simple hemodynamic parameters without recourse to new assumptions about the nature of the coupling between activity and oxygen use.  相似文献   

20.
We have recently used combined electrostimulation, neurophysiology, microinjection and functional magnetic resonance imaging (fMRI) to study the cortical activity patterns elicited during stimulation of cortical afferents in monkeys. We found that stimulation of a site in lateral geniculate nucleus (LGN) increases the fMRI signal in the regions of primary visual cortex receiving input from that site, but suppresses it in the retinotopically matched regions of extrastriate cortex. Intracortical injection experiments showed that such suppression is due to synaptic inhibition. During these experiments, we have consistently observed activation of superior colliculus (SC) following LGN stimulation. Since LGN does not directly project to SC, the current study investigated the origin of SC activation. By examining experimental manipulations inactivating the primary visual cortex, we present here evidence that the robust SC activation, which follows the stimulation of LGN, is due to the activation of corticocollicular pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号