首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiments are conducted with a perfluorinated dielectric fluid, Fluorinert FC-77, to identify the critical geometric parameters that affect flow boiling heat transfer and flow patterns in microchannels. In recent work by the authors (Harirchian and Garimella, 2009), seven different silicon test pieces containing parallel microchannels of widths ranging from 100 to 5850 μm, all with a depth of 400 μm were tested and it was shown that for a fixed channel depth, the heat transfer coefficient was independent of channel width for microchannels of widths 400 μm and larger, with the flow regimes in these microchannels being similar; nucleate boiling was also found to be dominant over a wide range of heat fluxes. In the present study, experiments are performed with five additional microchannel test pieces with channel depths of 100 and 250 μm and widths ranging from 100 to 1000 μm. Flow visualizations are performed using a high-speed digital video camera to determine the flow regimes, with simultaneous local measurements of the heat transfer coefficient and pressure drop. The aim of the present study is to investigate as independent parameters the channel width and depth as well as the aspect ratio and cross-sectional area on boiling heat transfer in microchannels, based on an expanded database of experimental results. The flow visualizations and heat transfer results show that the channel cross-sectional area is the important governing parameter determining boiling mechanisms and heat transfer in microchannels. For channels with cross-sectional area exceeding a specific value, nucleate boiling is the dominant mechanism and the boiling heat transfer coefficient is independent of channel dimensions; below this threshold value of cross-sectional area, vapor confinement is observed in all channels at all heat fluxes, and the heat transfer rate increases as the microchannel cross-sectional area decreases before premature dryout occurs due to channel confinement.  相似文献   

2.
This paper experimentally investigates flow boiling characteristics in a cross-linked microchannel heat sink at low mass fluxes and high heat fluxes. The heat sink consists of 45 straight microchannels each with a hydraulic diameter of 248 μm and heated length of 16 mm. Three cross-links, of width 500 μm, are introduced in the present microchannel heat sink to achieve better temperature uniformity and to avoid flow mal-distribution. Flow visualization, flow instability, two-phase pressure drop, and two-phase heat transfer measurements are conducted using the dielectric coolant FC-72 over a range of heat flux from 7.2 to 104.2 kW/m2, mass flux from 99 to 290 kg/m2 s, and exit quality from 0.01 to 0.71. Thermochromic liquid crystals are used in the present study as full-field surface temperature sensors to map the temperature distribution on the heat sink surface. Flow visualization studies indicate that the observed flow regime is primarily slug. Visual observations of flow patterns in the cross-links demonstrate that bubbles nucleate and grow rapidly on the surface of the cross-links and in the tangential direction at the microchannels’ entrance due to the effect of circulations generated in those regions. The two-phase pressure drop strongly increases with the exit quality, at xe,o < 0.3, and the two-phase frictional pressure drop increases by a factor of 1.6–2 compared to the straight microchannel heat sink. The flow boiling heat transfer coefficient increases with increasing exit quality at a constant mass flux, which is caused by the dominance of the nucleation boiling mechanism in the cross-link region.  相似文献   

3.
The objective of this study is to visualize the transient flow patterns and heat transfer behaviors at low mass fluxes and high heat fluxes. The silicon chip consists of the intercrossed microchannel array with 10 triangular microchannels with the hydraulic diameter of 155.4 μm, and five transverse trapezoid microchannels, separating the triangular microchannels into six independent zones. The chip is horizontally positioned. Liquid acetone is used as the working fluid. Tests were performed in the range of mass flux 40–80 kg/m2 s and heat flux 107–216 kW/m2.  相似文献   

4.
Experiments are conducted with a perfluorinated dielectric fluid, Fluorinert FC-77, to investigate the effects of channel size and mass flux (225–1420 kg/m2s) on microchannel flow boiling regimes by means of high-speed photography. Seven different silicon test pieces with parallel microchannels of widths ranging from 100 to 5850 μm, all with a depth of 400 μm, are considered. Flow visualizations are performed with a high-speed digital video camera while local measurements of the heat transfer coefficient are simultaneously obtained. The visualizations and the heat transfer data show that flow regimes in the microchannels of width 400 μm and larger are similar, with nucleate boiling being dominant in these channels over a wide range of heat flux. In contrast, flow regimes in the smaller microchannels are different and bubble nucleation at the walls is suppressed at a relatively low heat flux for these sizes. Two types of flow regime maps are developed and the effects of channel width on the flow regime transitions are discussed.  相似文献   

5.
This paper presents the results of an experimental study carried out with R-134a during flow boiling in a horizontal tube of 2.6 mm ID. The experimental tests included (i) heat fluxes in the range from 10 to 100 kW/m2, (ii) the refrigerant mass velocities set to the discrete values in the range of 240-930 kg/(m2 s) and (iii) saturation temperature of 12 and 22 °C. The study analyzed the heat transfer, through the local heat transfer coefficient along of flow, and pressure drop, under the variation of these different parameters. It was possible to observe the significant influence of heat flux in the heat transfer coefficient and mass velocity in the pressure drop, besides the effects of saturation temperature. In the low quality region, it was possible to observe a significant influence of heat flux on the heat transfer coefficient. In the high vapor quality region, for high mass velocities, this influence tended to vanish, and the coefficient decreased. The influence of mass velocity in the heat transfer coefficient was detected in most tests for a threshold value of vapor quality, which was higher as the heat flux increased. For higher heat flux the heat transfer coefficient was nearly independent of mass velocity. The frictional pressure drop increased with the increase in vapor quality and mass velocity. Predictive models for heat transfer coefficient in mini channels were evaluated and the calculated coefficient agreed well with measured data within a range 35% for saturation temperature of 22 °C. These results extend the ranges of heat fluxes and mass velocities beyond values available in literature, and add a substantial contribution to the comprehension of boiling heat transfer phenomena inside mini channels.  相似文献   

6.
Flow boiling heat transfer coefficients of CO2 have been measured in a single microchannel. Experiments were carried out in a horizontal stainless steel tube of 0.529 mm inner diameter, for three temperatures (−10, −5 and 0 °C), with the mass flux ranging from 200 to 1200 kg/m2 s and the heat flux varying from 10 to 30 kW/m2. The investigation covered qualities from zero to the dryout inception, i.e. pre-dryout conditions. Compared to larger microchannels and positive temperatures, a higher contribution of convective boiling was found, with a larger heat transfer coefficient than for pure nucleate boiling. Mainly two heat transfer regimes were found, depending on the boiling number (Bo). For Bo > 1.1 × 10−4, the heat transfer coefficient was highly dependent on the heat flux and moderately influenced by the quality and the mass flux. For Bo < 1.1 × 10−4, the heat transfer coefficient was hardly affected by the heat flux but strongly influenced by the quality and the mass flux. In addition, dryout results were reported. The effect of the mass flux on the dryout inception quality was found to be highly dependent on the heat flux and the saturation temperature.  相似文献   

7.
Flow boiling heat transfer with the refrigerants R-134a and R-245fa in copper microchannel cold plate evaporators is investigated. Arrays of microchannels of hydraulic diameter 1.09 and 0.54 mm are considered. The aspect ratio of the rectangular cross section of the channels in both test sections is 2.5. The heat transfer coefficient is measured as a function of local thermodynamic vapor quality in the range −0.2 to 0.9, at saturation temperatures ranging from 8 to 30 °C, mass flux from 20 to 350 kg m−2 s−1, and heat flux from 0 to 22 W cm−2. The heat transfer coefficient is found to vary significantly with heat flux and vapor quality, but only slightly with saturation pressure and mass flux for the range of values investigated. It was found that nucleate boiling dominates the heat transfer. In addition to discussing measurement results, several flow boiling heat transfer correlations are also assessed for applicability to the present experiments.  相似文献   

8.
Adiabatic and diabatic two-phase venting flow in a microchannel   总被引:1,自引:0,他引:1  
The growth and advection of the vapor phase in two-phase microchannel heat exchangers increase the system pressure and cause flow instabilities. One solution is to locally vent the vapor formed by capping the microchannels with a porous, hydrophobic membrane. In this paper we visualize this venting process in a single 124 μm by 98 μm copper microchannel with a 65 μm thick, 220 nm pore diameter hydrophobic Teflon membrane wall to determine the impact of varying flow conditions on the flow structures and venting process during adiabatic and diabatic operation. We characterize liquid velocities of 0.14, 0.36 and 0.65 m/s with superficial air velocities varying from 0.3 to 8 m/s. Wavy-stratified and stratified flow dominated low liquid velocities while annular type flows dominated at the higher velocities. Gas/vapor venting can be improved by increasing the venting area, increasing the trans-membrane pressure or using thinner, high permeability membranes. Diabatic experiments with mass flux velocities of 140 and 340 kg/s/m2 and exit qualities up to 20% found that stratified type flows dominate at lower mass fluxes while churn-annular flow became more prevalent at the higher mass-flux and quality. The diabatic flow regimes are believed to significantly influence the pressure-drop and heat transfer coefficient in vapor venting heat exchangers.  相似文献   

9.
To develop a highly stable microchannel heat sink for boiling heat transfer, three types of diverging microchannels (Type 1, Type 2 and Type 3) were designed to experimentally investigate the effect of different distributions of artificial nucleation sites (ANS) on the enhancement of flow boiling heat transfer, in 10 parallel diverging microchannels with a mean hydraulic diameter of 120 μm. Water was used as the working fluid with mass flux, based on the mean cross section area, ranging from 99 to 297 kg/m2 s. The Type-1 system did not contain any ANS; the Type-2 system contained ANS distributed uniformly along the downstream half of the channel; and the Type-3 system contained ANS distributed uniformly along the entire channel. The ANS are laser-etched pits on the bottom wall of the channel and have a mouth diameter of approximately 20-22 μm, as indicted by the heterogeneous nucleation theory. The results of the present study reveal that the presence of ANS for flow boiling in parallel diverging microchannels significantly reduces the wall superheat and enhances the boiling heat transfer performance. The Type-3 system shows the best boiling heat transfer performance.  相似文献   

10.
This article is the second part of a study on flow boiling of R236fa and R245fa. This part presents the heat transfer coefficients obtained in a 12.7 mm silicon evaporator composed of 135 microchannels with 85 μm wide and 560 μm high channels separated by 46 μm wide fins. There were 35 local heaters and temperature measurements arranged in a 5 × 7 array. The heat transfer results were uniform in the lateral direction to the flow (attributable to the inlet restriction) and a function of the heat flux, vapor quality and mass flux. The steady-state standard deviation of the local base temperature was less than 0.2 °C, inferring that the boiling process was very stable. For wall heat fluxes over 45 kW/m2, the heat transfer coefficient curves were V-shaped, decreasing for intermittent flow regimes and increasing for annular flow. The three-zone model of Thome et al. (2004) was the best heat transfer prediction method when setting the dryout thickness equal to the channel roughness.  相似文献   

11.
Seed bubbles are generated on microheaters located at the microchannel upstream and driven by a pulse voltage signal, to improve flow and heat transfer performance in microchannels. The present study investigates how seed bubbles stabilize flow and heat transfer in micro-boiling systems. For the forced convection flow, when heat flux at the wall surface is continuously increased, flow instability is self-sustained in microchannels with large oscillation amplitudes and long periods. Introduction of seed bubbles in time sequence improves flow and heat transfer performance significantly. Low frequency (∼10 Hz) seed bubbles not only decrease oscillation amplitudes of pressure drops, fluid inlet and outlet temperatures and heating surface temperatures, but also shorten oscillation cycle periods. High frequency (∼100 Hz or high) seed bubbles completely suppress the flow instability and the heat transfer system displays stable parameters of pressure drops, fluid inlet and outlet temperatures and heating surface temperatures. Flow visualizations show that a quasi-stable boundary interface from spheric bubble to elongated bubble is maintained in a very narrow distance range at any time. The seed bubble technique almost does not increase the pressure drop across microsystems, which is thoroughly different from those reported in the literature. The higher the seed bubble frequency, the more decreased heating surface temperatures are. A saturation seed bubble frequency of 1000–2000 Hz can be reached, at which heat transfer enhancement attains the maximum degree, inferring a complete thermal equilibrium of vapor and liquid phases in microchannels. Benefits of the seed bubble technique are the stabilization of flow and heat transfer, decreasing heating surface temperatures and improving temperature uniformity of the heating surface.  相似文献   

12.
Flow boiling behaviors in hydrophilic and hydrophobic microchannels   总被引:1,自引:0,他引:1  
Surface wettability is a critical parameter in small scale phenomena, especially two-phase flow, since the surface force becomes dominant as size decreases. In present study, experiments of water flow boiling in hydrophilic and hydrophobic rectangular microchannels were conducted to investigate the wettability effect on flow boiling in rectangular microchannels. The rectangular microchannels were fabricated with a photosensitive glass to visualize flow pattern. The hydrophilic bare photosensitive glass microchannel was chemically treated to obtain a hydrophobic microchannel. And, visualization of flow patterns was carried out. And boiling heat transfer and two-phase pressure drop was analyzed with visualization results. The boiling heat transfer coefficient in the hydrophobic rectangular microchannel was higher than that in the hydrophilic rectangular microchannel, which was highly related with nucleation site density and liquid film motion. And the pressure drop in the hydrophobic rectangular microchannel was higher than that in the hydrophilic rectangular microchannel, which was highly related with unstable motions of bubble and liquid film. Finally, we find out the wettability is important parameter on the flow pattern, which were highly related with two-phase heat and mass transfer.  相似文献   

13.
Experiments were conducted to analyze flow boiling characteristics of water in a single brass microchannel of 25 mm length, 201 μm width, and 266 μm depth. Different heat flux conditions were tested for each of two different mass flow rates over three different values of inlet fluid temperature. Temporal and spatial surface temperature profiles were analyzed to show the relative effect of axial heat conduction on temperature rise along the channel length and the effect of flow regime transition on local surface temperature oscillation. Vapor bubble growth rate increased with increasing wall superheat. The slower a bubble grew, the further it was carried downstream by the moving liquid. Bubble growth was suppressed for increased mass flux while the vapor bubble was less than the channel diameter. The pressure spike of an elongating vapor bubble was shown to suppress the growth of a neighboring bubble by more than 50% of its volume. An upstream progression of the Onset of Bubble Elongation (OBE) was observed that began at the channel exit and progressed upstream. The effects of conjugate heat transfer were observed when different flow regime transitions produced different rates of progression for the elongation sequence. Instability was observed at lower heat fluxes for this single channel experiment than for similar studies with multiple channels.  相似文献   

14.
Subcooled flow boiling heat transfer for refrigerant R-134a in vertical cylindrical tubes with 0.83, 1.22 and 1.70 mm internal diameter was experimentally investigated. The effects of the heat flux, q″ = 1–26 kW/m2, mass flux, G = 300–700 kg/m2 s, inlet subcooling, ΔTsub,i = 5–15 °C, system pressure, P = 7.70–10.17 bar, and channel diameter, D, on the subcooled boiling heat transfer were explored in detail. The results are presented in the form of boiling curves and heat transfer coefficients. The boiling curves evidenced the existence of hysteresis when increasing the heat flux until the onset of nucleate boiling, ONB. The wall superheat at ONB was found to be essentially higher than that predicted with correlations for larger tubes. An increase of the mass flux leads, for early subcooled boiling, to an increase in the heat transfer coefficient. However, for fully developed subcooled boiling, increases of the mass flux only result in a slight improvement of the heat transfer. Higher inlet subcooling, higher system pressure and smaller channel diameter lead to better boiling heat transfer. Experimental heat transfer coefficients are compared to predictions from classical correlations available in the literature. None of them predicts the experimental data for all tested conditions.  相似文献   

15.
An experimental study of evaporation heat transfer coefficients for single circular small tubes was conducted for the flow of C3H8, NH3, and CO2 under various flow conditions. The test matrix encompasses the entire quality range from 0.0 to 1.0, mass fluxes from 50 to 600 kg m−2 s−1, heat fluxes from 5 to 70 kW m−2, and saturation temperatures from 0 to 10 °C. The test section was made of circular stainless steel tubes with inner diameters of 1.5 mm and 3.0 mm, and a length of 2000 mm in a horizontal orientation. The test section was uniformly heated by applying electric power directly to the tubes. The effects of mass flux, heat flux, saturation temperature, and inner tube diameter on the heat transfer coefficient are reported. Among the working refrigerants considered in this study, CO2 has the highest heat transfer coefficient. Laminar flow was observed in the evaporative small tubes, and was considered in the modification of boiling heat transfer coefficients and pressure drop correlations.  相似文献   

16.
By using unique experimental techniques and carefully constructed experimental apparatus, the characteristics of flow boiling of water in microscale were investigated using a single horizontal rectangular microchannel. A polydimethylsiloxane rectangular microchannel (Dh = 103.5 and 133 μm) was fabricated by using the replica molding technique, a kind of soft lithography. A piecewise serpentine platinum microheater array on a Pyrex substrate was fabricated with the surface micromachining MEMS technique. Real time flow visualization of the phase change phenomena inside the microchannel was performed using a high speed CCD camera with microscope. The experimental local boiling heat transfer coefficients were studied, and single bubble inception, growth, and departure, as well as elongated bubble behavior were analyzed to elucidate the microscale heat transfer mechanisms. Tests were performed for mass fluxes of 77.5, 154.9, and 309.8 kg/m2 s and heat fluxes of 180–500 kW/m2. The effects of mass flux, heat flux, and vapor qualities on flow boiling heat transfer in a microchannel were studied.  相似文献   

17.
Flow condensation heat transfer coefficients (HTCs) and pressure drop of R22, propylene, propane, DME and isobutane are measured on a horizontal plain tube. The main test section in the experimental flow loop is made of a plain copper tube of 8.8 mm inner diameter and 530 mm length. The refrigerant is cooled by passing cold water through the annulus surrounding the test section. Tests are performed at a fixed refrigerant saturation temperature of 40 ± 0.2 °C with mass fluxes of 100, 200, and 300 kg/m2 s and heat flux of 7.3–7.7 kW/m2. The heat transfer and pressure drop data are obtained in the vapor quality range of 10–90%. Test results show that for a given mass flux the flow condensation HTCs of propylene, propane, DME and isobutane are higher than those of R22 by up to 46.8%, 53.3%, 93.5% and 61.6%, respectively. Also well-known correlations developed based upon conventional fluorocarbon refrigerants predict the present data within a mean deviation of 33%. Finally, the pressure drop increases as the mass flux and quality increase and isobutane shows the highest pressure drop due to its lowest vapor pressure among the fluids tested.  相似文献   

18.
Flow boiling heat transfer in a single circular micro-channel of 0.19 mm ID has been experimentally investigated with R123 and R134a for various experimental conditions: heat fluxes (10, 15, 20 kW/m2), mass velocities (314, 392, 470 kg/m2 s), vapor qualities (0.2–0.85) and different saturation pressures (158, 208 kPa for R123; 900, 1100 kPa for R134a). The heat transfer trends between R123 and R134a are clearly distinguished. Whether nucleate boiling is suppressed at low vapor quality or not determines the heat transfer trend and mechanism in the flow boiling of micro-channels. High convective heat transfer coefficients in the two-phase flow of micro-channels enables nucleate boiling to be suppressed even at low vapor quality, depending on the wall superheat requirement for nucleate boiling. In the case of early suppression of nucleate boiling, specifically R123, heat transfer is dominated by evaporation of thin liquid films around elongated bubbles. In the contrary case, namely R134a, nucleate boiling is dominant heat transfer mechanism until its suppression at high vapor quality and then two-phase forced convection heat transfer becomes dominant. It is similar to the heat transfer characteristic of macro-channels except the enhancement of nucleate boiling and the short forced convection region.  相似文献   

19.
Hydrodynamic and thermal characteristics of flow boiling in a non-uniformly heated microchannel were studied. Experiments were performed with a single microchannel and a series of microheaters to study the microscale boiling of water under axially non-uniform heat input conditions. A simultaneous real time visualization of the flow pattern was performed with the measurement of experimental parameters. Tests were performed over a mass flux of 309.8 kg/m2 s, and heat flux of 200–600 kW/m2. Test results showed different fluctuations of heated wall temperature, pressure drop, and mass flux with variations of the heat input along the flow direction. The unique periodic flow boiling in a single microchannel was observed at all heat flux conditions except for the increasing heat input distribution case which is the nearly uniform effective heat input distribution condition. The instability is correlated with flow pattern transition. For the nearly uniform effective heating condition, no fluctuation of the wall temperature, pressure drop, or mass flux was observed. We can relieve the instability by increasing total heat input along the flow direction and predict the instability using the transition criteria and flow pattern map.  相似文献   

20.
This article presents experiments conducted with two single rectangular mini-channels of same hydraulic diameter (1.4 mm) and different aspect ratios for conditions of horizontal boiling flow. The Forane® 365 HX used was subcooled (ΔTsub = 15 °C) for all the boiling curves presented in the paper. Local heat transfer coefficients were measured for heat flux ranging from 25 to 62 kW m−2 and mass flux from 200 kg m−2 s−1 to 400 kg m−2 s−1. The boiling flows were observed with two different cameras (depending on the flow velocity) through a visualization window. The flow patterns in the two channels were compared for similar conditions. The results show that the boiling heat transfer coefficient and the pressure drop values are different for the two single mini-channels. For low heat flux condition, the channel with lowest aspect ratio (H/W = 0.143) has a higher heat transfer coefficient. On the other hand, for high heat flux condition, the opposite situation occurs, namely the heat transfer coefficient becomes higher for the channel with highest aspect ratio (H/W = 0.43). This is probably due to the earlier onset of dryout in the channel with lowest aspect ratio. For the two cases of heating, the pressure drop for the two-phase flow remains lower for the channel with lowest aspect ratio. These results show that the aspect ratio plays a substantial role for boiling flows in rectangular channels. As for single-phase flows, the heat transfer characteristics are significantly influenced (even though the hydraulic diameter remains the same) by this parameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号