首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 932 毫秒
1.
This paper compares several linear‐theory‐based models for droplet shattering employed for simulations of spray impingement on flat wall surface or a circular cylinder. Numerical simulations are conducted using a stochastic separated flow (SSF) technique that includes sub‐models for droplet dynamics and impact. Results for spray impingement over a flat wall indicate that the linear theory applicable for a single droplet impact over‐predicts the number of satellite (or secondary) droplets upon shattering when compared to experimental data. The causes for the observed discrepancies are discussed. Numerical simulation results for spray impingement over a circular cylinder in cross flow are obtained and discussed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
We numerically investigate bouncing and non-bouncing of droplets during isothermal impact on superhydrophobic surfaces. An in-house, experimentally validated, finite element method-based computational model is employed to simulate the droplet impact dynamics and transient fluid flow within the droplet. The liquid–gas interface is tracked accurately in Lagrangian framework with dynamic wetting boundary condition at three-phase contact line. The interplay of kinetic, surface and gravitational energies is investigated via systematic variation of impact velocity and equilibrium contact angle. The numerical simulations demonstrate that the droplet bounces off the surface if the total droplet energy at the instance of maximum recoiling exceeds the initial surface and gravitational energy, otherwise not. The non-bouncing droplet is characterized by the oscillations on the free surface due to competition between the kinetic and surface energy. The droplet dimensions and shapes obtained at different times by the simulations are compared with the respective measurements available in the literature. Comparisons show good agreement of numerical data with measurements, and the computational model is able to reconstruct the bouncing and non-bouncing of the droplet as seen in the measurements. The simulated internal flow helps to understand the impact dynamics as well as the interplay of the associated energies during the bouncing and non-bouncing. A regime map is proposed to predict the bouncing and non-bouncing on a superhydrophobic surface with an equilibrium contact angle of 155°, using data of 86 simulations and the measurements available in the literature. We discuss the validity of the computational model for the wetting transition from Cassie to Wenzel state on micro- and nanostructured superhydrophobic surfaces. We demonstrate that the numerical simulation can serve as an important tool to quantify the internal flow, if the simulated droplet shapes match the respective measurements utilizing high-speed photography.  相似文献   

3.
Alinejad  Javad  Peiravi  Mohammad Mohsen 《Meccanica》2020,55(10):1975-2002

This study is investigating three-dimensional numerical simulation of a Newtonian droplet impact and break on two square cylinders based on dynamic contact angle of droplet at the spatial interface between two solid–fluid phases. The droplet impact details and morphology studied in the present work could provide ideas for the spray wall impingement modeling in the simulation of many industrial applications, such as spray painting and liquid cooling of surfaces. The droplet impact is investigated on two square cylinders in 9 different modes with different droplet diameters and physical conditions such as different positions of droplet. The volume of fluid (VOF) method was used with open-source software. The results have been compared and validated quantitatively and qualitatively with the experimental results. Results represent droplet diameter into cylinder dimension and velocity profiles are affected on number of broken droplets, break times and droplet deformation. Also, mean velocities of droplet after impact on two square cylinders at first break time were 0, 0.025, 0.12, 0.47, 0.11, 0.08, 0.2, 0.012, 0.19 m/s for cases 1–9, respectively. Moreover, in case 7 that droplet diameter into cylinder dimension was 2, the maximum number of break-up into secondary droplets was 10 drops that occurred for 4 times.

  相似文献   

4.
The droplet dynamics passing through a cylinder obstruction was investigated with direct numerical simulations with FE-FTM (Finite Element-Front Tracking Method). The effect of droplet size and capillary number (Ca) was studied for both Newtonian and viscoelastic fluids. In the case of Newtonian droplet immersed in Newtonian medium, the droplet breakup induced by the geometric hindrance depends on the droplet size. As Ca increases, the short droplets (1.3 times longer than the channel width) break up while passing through the obstruction. However, the breakup does not occur for longer droplets (1.8 times longer than the channel width). When the viscoelastic fluid characterized by the Oldroyd-B model is considered, the Newtonian droplet immersed in viscoelastic medium breaks up into two smaller droplets while passing through the cylinder obstruction with increasing Dem (Deborah number of the medium). We also show that the normal stress difference plays a key role on the droplet breakup and the droplet extension. The normal stress difference is enhanced in the negative wake region due to the droplet flow, which also promotes droplet extension in that region. This numerical study provides information not only on underlying physics of the droplet flows passing through a cylinder obstruction but also on the useful guidelines for microfluidic applications.  相似文献   

5.
Chen  X. X.  Shi  Z. Y.  Wang  G. Q.  Zheng  E. H.  Tang  P. B.  Xu  J. R. 《Fluid Dynamics》2022,56(1):S19-S33

The impact behavior of individual biomass oil droplets was investigated on solid surfaces having different structures (flat, cylindrical, and spherical) using the high-speed video technique. This makes it possible to compare the evolution of the droplet impact on various surface structures. The impact behaviors of retraction–oscillation and adhesion are analyzed for different hydrophobic surfaces. The influence of the Weber number (We), the surface structure, and the surface curvature is further examined by focusing on the retraction and stable adhesion (thickness, adhesion, and contact angle) for different biomass oil droplets. The results show that the retraction factor gradually increases as We increases to some critical value, beyond which the increase rate slows down or the retraction factor begins to decrease. The largest retraction factor is observed on the flat surface and the smallest one appears on the spherical surface. The adhesion thickness of the liquid film oscillates periodically over time, and its oscillation amplitude gradually decreases with a constant frequency, which is smaller for the more hydrophobic surfaces. The curvatures of the cylinder and sphere have little influence on the stable adhesion behavior. For the different droplet types, the adhesion diameter on the flat surface gradually increases as We rises, whereas the adhesion thickness gradually decreases with increase in We. These results are helpful for understanding the impact behaviors of biomass oil droplets with high viscosity and small surface tension on solid surfaces.

  相似文献   

6.
The collision dynamics of water droplets impacting onto a solid is studied by means of three-dimensional computer simulations. The Navier–Stokes equations for unsteady, incompressible, viscous fluids in the three-dimensional Cartesian coordinate system are approximated and solved by a finite difference method. The volume-of-fluid (VOF) technique is used to track the free liquid surface. Normal and oblique collisions of droplets with the substrate are simulated at low droplet impact inertia. The effect of impact angle on the deformation behavior of droplets is investigated. The experimental observations and the numerical results are in reasonable agreement. Theoretical aspects of the physics of the collision phenomena are addressed.  相似文献   

7.
Despite many theoretical and experimental works dealing with the impact of dense melt droplets on the substrate during the process of thermal spray coating, the dynamics of the impingement of hollow melt droplet and the subsequent splat formation are not well addressed. In this paper a model study for the dynamic impingement of hollow droplet is presented. The hollow droplet is modelled such that it consists of a liquid shell enclosing a gas cavity. The impingement model considers the transient flow dynamics during impact, spreading and solidification of the droplet using the volume of fluid surface tracking method (VOF) coupled with a solidification model within a one-domain continuum formulation. The results for spreading, solidification and formation of splats clearly show that the impingement process of hollow droplet is distinctly different from the dense droplet. Study with different droplet void fractions and void distribution indicates that void fraction and void distribution have a significant influence on the flow dynamics during impact and on the final splat shape. The results are likely to provide insights for the less-explored behaviour of hollow melt droplets in thermal spray coating processes.  相似文献   

8.
This paper aims to study a novel drop-on-demand droplet generation mechanism in which the oscillation and deformation of a non-equilibrium bubble in close proximity to a free surface induce an axisymmetric liquid spike on the free surface. The evolution of the liquid spike and its deformation due to the effect of surface tension force lead to the formation of a droplet. The free surface can be accorded by either a circular hole on a horizontal flat plate or by the top opening/nozzle of a vertical cylinder. A high-speed camera capable of obtaining images at a frame rate of 15,000 fps is utilized to observe the droplet formation process. Numerical simulations corresponding to the experiments are performed using the boundary integral spatial solution coupled with the time integration, i.e., a mixed Eulerian–Lagrangian method. In the experiments the bubble is generated using a very low voltage (only 55 V) in contrast to the relatively much higher voltages usually employed in reported works. This is very attractive from a safety viewpoint and accords great simplification of the setup. A comparison is made between the numerical and experimental results. A reasonable agreement has been found. The influences of the main design parameters, namely, the bubble-free surface distance and the dimension of the hole/nozzle on the bubble dynamics and on the droplet formation process are discussed and the conditions of the bubble dynamics under which a satellite-free droplet can be generated are sought. Furthermore, the effects of different geometries, namely, the horizontal flat plate and the vertical cylinder on the bubble dynamics and on the droplet features are examined. One important feature of the proposed actuation mechanism is the capability of producing droplets much smaller than the nozzle size. The possible applications of this mechanism are those where the accurate direction of the ejected droplet is of great importance such as inkjet printing.   相似文献   

9.
Adding atomized liquid to air flowing around a cylinder gives an appreciable increase in heat transfer by forming a liquid film on the cylinder surface. The heat transfer coefficient depends upon the amount of liquid forming the film, which is limited by two phenomena: droplet deflection from the liquid film on the surface and droplets not striking the cylinder. This paper presents a method of calculating the quantity of liquid droplets settling on a cylinder surface in a gas-liquid spray flow. A coefficient k, the volume ratio of the liquid entering the film to the amount of liquid directed at the cylinder, is introduced. k values were calculated by means of numerical computation and the theory verified experimentally. The calculation method permits estimation of the dependence of the amount of liquid settling on a cylinder on the droplet diameter distribution parameters and on the linear gas velocity  相似文献   

10.
We carry out combined experimental and theoretical studies of liquid droplet evaporation on heated surfaces in a closed container filled with saturated vapor. The droplets are deposited on an electrically heated thin stainless steel foil. The evolution of droplet shapes is studied by optical methods simultaneously with high-resolution foil temperature measurements using thermochromic liquid crystals. A mathematical model is developed based on the assumptions that the droplet surface has uniform mean curvature and the contact line is pinned during evaporation. Both the dynamics of liquid–vapor interface and the temperature profiles at the foil are shown to be in good agreement with the experimental data.  相似文献   

11.
We model the hydrodynamics of a shear cell experiment with an immiscible nematic liquid crystal droplet in a viscous fluid using an energetic variational approach and phase-field methods [86]. The model includes the coupled system for the flow field for each phase, a phase-field function for the diffuse interface and the orientational director field of the liquid crystal phase. An efficient numerical scheme is implemented for the two-dimensional evolution of the shear cell experiment for this initial data. The same model reduces to an immiscible viscous droplet in a viscous fluid, which we simulate first to compare with other numerical and experimental behavior. Then we simulate drop deformation by varying capillary number (independent of liquid crystal physics), liquid crystal interfacial anchoring energy and Oseen–Frank distortional elastic energy. We show the number of eventual droplets (one to several) and “beads on a string” behavior are tunable with these three physical parameters. All stable droplets possess signature quadrupolar shear and normal stress distributions. The liquid crystal droplets always possess a global surface defect structure, called a boojum, when tangential surface anchoring is imposed. Boojums [79], [32] consist of degree +1/2 and ?1/2 surface defects within a bipolar global orientational structure.  相似文献   

12.
The behavior of particles impacting the surface of a charged droplet involves adhesion, rebound, and submersion. In the present study, a numerical model for simulating particle impacts on charged droplets is presented that takes into account the various impact modes. With the droplet considered as a solid boundary, the criterion for rebounding is that the particle’s impact angle is <85°. The simulated trajectories of the particles are verified by comparing with experimental data for low-velocity particles to assess the reliability of the model. For impact angles >85°, particles undergo three distinct modes depending on normal impact velocities. The critical velocity of adhesion/rebound and rebound/submersion is used to identify the mode that the particles are undergoing. The criteria are also verified by comparing with analytical data. The results show that the impact angle of particles increases with increasing Coulomb number and decreases dramatically with increasing Stokes number, both of which lead to a high probability for particle rebound.  相似文献   

13.
14.
The present paper reports an experimental study aimed at characterizing the effects of heat transfer on the secondary atomization, which occurs during droplet impact on hot surfaces at conditions reproducing those occurring at fuel injection in internal combustion engines. The experiments consider single isooctane and water droplets impacting at different angles on a stainless steel surface with known roughness and encompass a range of Weber numbers from 240 to 600 and heat transfer regimes from the film-vaporization up to the Leidenfrost regime. The mechanisms of secondary breakup are inferred from the temporal evolution of the morphology of the impact imaged with a CCD camera, together with instantaneous measurements of droplet size and velocity. The combination of a technique for image processing with a phase Doppler instrument allows evaluating extended size distributions from 5.5 μm up to a few millimetres and to cover the full range of secondary droplet sizes observed at all heat transfer regimes and impaction angles. Temporal evolution of the size and velocity distributions are then determined. The experiments are reported at impact conditions at which disintegration does not occur at ambient temperature. So, any alteration observed in droplet impact behavior is thermally induced. The analysis is relevant for port fuel injection systems, where droplets injected to impact on the back surface of the valves, behave differently depending on fuel properties, particularly when the use of alcohols is considered, even as an additive to gasoline.  相似文献   

15.
郑诺  刘海龙 《力学学报》2022,54(7):1934-1942
非牛顿流体液滴撞击固体表面的行为广泛存在于多种工农业生产中, 然而目前相关研究主要关注牛顿流体, 非牛顿流变特性对液滴撞击动力学的影响机制还有待探索. 本文研究了纯剪切变稀流体(质量分数≤ 0.03%的黄原胶水溶液)液滴撞击疏水表面后的最大铺展及回弹行为. 通过高速摄像技术捕获液滴撞击疏水表面的运动过程及形态变化, 研究了液滴的铺展回缩过程. 实验结果表明, 在相同We下, 剪切变稀特性对液滴撞击疏水表面后的铺展阶段影响很小, 但对回缩阶段影响很大. 黄原胶浓度增加使得液滴依次表现出部分回弹、完全回弹和表面沉积三种不同的回弹行为. 利用能量守恒定律推导出了液滴能在疏水表面上回弹的临界无量纲高度ξc理论值. 发现牛顿流体与非牛顿流体液滴最大无量纲高度ξmax均符合标度律ξmax ~ αWe斜率随黄原胶浓度增大而减小. 基于有效雷诺数Reeff, 提出了一种有效黏度μeff表达式, 并据此建立了剪切变稀流体的最大无量纲直径βmax预测模型. 该模型在较广We区间与实验测量值取得了良好一致.   相似文献   

16.
This paper combines experimental data with simple mathematical models to investigate the influence of spray formulation type and leaf character (wettability) on shatter, bounce and adhesion of droplets impacting with cotton, rice and wheat leaves. Impaction criteria that allow for different angles of the leaf surface and the droplet impact trajectory are presented; their predictions are based on whether combinations of droplet size and velocity lie above or below bounce and shatter boundaries. In the experimental component, real leaves are used, with all their inherent natural variability. Further, commercial agricultural spray nozzles are employed, resulting in a range of droplet characteristics. Given this natural variability, there is broad agreement between the data and predictions. As predicted, the shatter of droplets was found to increase as droplet size and velocity increased, and the surface became harder to wet. Bouncing of droplets occurred most frequently on hard-to-wet surfaces with high-surface-tension mixtures. On the other hand, a number of small droplets with low impact velocity were observed to bounce when predicted to lie well within the adhering regime. We believe this discrepancy between the predictions and experimental data could be due to air layer effects that were not taken into account in the current bounce equations. Other discrepancies between experiment and theory are thought to be due to the current assumption of a dry impact surface, whereas, in practice, the leaf surfaces became increasingly covered with fluid throughout the spray test runs.  相似文献   

17.
In this paper, a numerical methodology for modeling contact line motion in a dual-grid level-set method (DGLSM) – solved on a uniform grid for interface which is twice that for the flow equations – is presented. A quasi-dynamic contact angle model – based on experimental inputs – is implemented to model the dynamic wetting of a droplet, impacting on a hydrophobic or a superhydrophobic surface. High-speed visualization experiments are also presented for the impact of a water droplet on hydrophobic surfaces, with non-bouncing at smaller and bouncing at larger impact velocity. The experimental results for temporal variation of the droplet shapes, wetted-diameter and maximum height of the droplet match very well with the DGLSM based numerical results. The validation of the numerical results is also presented with already published experimental results, for the non-bouncing on a hydrophobic and bouncing on a superhydrophobic surface, at a constant impact velocity. Finally, a qualitative as well as quantitative performance of the DGLSM as compared to the traditional level set method (LSM) is presented by considering our experimental results. The accuracy of the partially refined DGLSM is close to that of the fine-grid based LSM, at a computation cost which is close to that of the coarse-grid based LSM. The DGLSM is demonstrated as an improved LSM for the computational multi-fluid dynamics (CMFD) simulations involving contact line motion.  相似文献   

18.
采用光滑粒子动力学SPH方法建立液滴冲击弹性基底的流固耦合数值模型,给出描述粘性流体和弹性固体运动的SPH离散方程和数值处理格式,引入人工耗散项来抑制标准SPH方法的数值震荡。为模拟液滴的表面张力效应,通过精确检测边界粒子,采用拉格朗日插值方法计算表面法向量和曲率,结合界面理论中的连续表面力CSF方法,建立了适用于自由表面液滴的表面力模型,方形液滴变形的模拟结果与拉普拉斯理论解吻合较好。随后,采用SPH流固耦合模型模拟1.0 mm直径水滴以不同速度(0.2 m/s~3.0 m/s)冲击两种薄板型基底,分析了基底弹性变形对液滴铺展、收缩以及回弹行为的影响。  相似文献   

19.
The results of an experimental study on droplet impactions in the flow of a gas-sheared liquid film are presented. In contrast to most similar studies, the impacting droplets were entrained from film surface by the gas stream. The measurements provide film thickness data, resolved in both longitudinal and transverse coordinates and in time together with the images of droplets above the interface and images of gas bubbles entrapped by liquid film. The parameters of impacting droplets were measured together with the local liquid film thickness. Two main scenarios of droplet-film interaction, based on type of film perturbation, are identified; the parameter identifying which scenario occurs is identified as the angle of impingement. At large angles an asymmetric crater appears on film surface; at shallow angles a long, narrow furrow appears. The most significant difference between the two scenarios is related to possible impact outcome: craters may lead to creation secondary droplets, whereas furrows are accompanied by entrapment of gas bubbles into the liquid film. In addition, occurrence of partial survival of impacting droplet is reported.  相似文献   

20.
The present article proposes a new droplet collision model considering droplet collision-induced breakup process with the formation of satellite droplets. The new model consists of several equations to investigate the post-collision characteristics of colliding droplets and satellite droplets. These equations are derived from the conservations of droplet mass, momentum, and energy between before and after collision, and make it possible to predict the number of satellite droplets, and the droplet size and velocity in the analytical way. To validate the new collision model, numerical calculations are performed and their results are compared with experimental data published earlier for binary collision of water droplets. It is found from the results that the new model shows good agreement with experimental data for the number of satellite droplets. It can be also shown that the predicted mean diameter by the new model decrease with increasing the Weber number because of the collision-induced breakup, whereas the O’Rourke model fails to predict the size reduction via the binary droplet collision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号