首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reflexive polygons have attracted great interest both in mathematics and in physics. This paper discusses a new aspect of the existing study in the context of quiver gauge theories. These theories are 4d supersymmetric worldvolume theories of D3 branes with toric Calabi‐Yau moduli spaces that are conveniently described with brane tilings. We find all 30 theories corresponding to the 16 reflexive polygons, some of the theories being toric (Seiberg) dual to each other. The mesonic generators of the moduli spaces are identified through the Hilbert series. It is shown that the lattice of generators is the dual reflexive polygon of the toric diagram. Thus, the duality forms pairs of quiver gauge theories with the lattice of generators being the toric diagram of the dual and vice versa.  相似文献   

2.
We describe wall-crossing for local, toric Calabi-Yau manifolds without compact four-cycles, in terms of free fermions, vertex operators, and crystal melting. Firstly, to each such manifold we associate two states in the free fermion Hilbert space. The overlap of these states reproduces the BPS partition function corresponding to the non-commutative Donaldson-Thomas invariants, given by the modulus square of the topological string partition function. Secondly, we introduce the wall-crossing operators which represent crossing the walls of marginal stability associated to changes of the B-field through each two-cycle in the manifold. BPS partition functions in non-trivial chambers are given by the expectation values of these operators. Thirdly, we discuss crystal interpretation of such correlators for this whole class of manifolds. We describe evolution of these crystals upon a change of the moduli, and find crystal interpretation of the flop transition and the DT/PT transition. The crystals which we find generalize and unify various other Calabi-Yau crystal models which appeared in literature in recent years.  相似文献   

3.
We obtain an exact solution of the supergravity equations of motion in which the four-dimensional observed Universe is one of a number of colliding D3 branes in a Calabi-Yau background. The collision results in the ten-dimensional spacetime splitting into disconnected regions, bounded by curvature singularities. However, near the D3 branes the metric remains static during and after the collision. We also obtain a general class of solutions representing p-brane collisions in arbitrary dimensions, including one in which the universe ends with the mutual annihilation of a positive-tension and a negative-tension 3 brane.  相似文献   

4.
In this note we make a test of the open topological string version of the OSV conjecture in the toric Calabi-Yau manifold X=O(-3)→ P2 with background D4-branes wrapped on Lagrangian submanifolds. The D-brane partition function reduces to an expectation value of some inserted operators of a q-deformedYang-Mills theory living on a chain of P1's in the base P2 of X. At large $N$ this partition function can be written as a sum over squares of chiral blocks, which are related to the open topological string amplitudes in the local P2 geometry with branes at both the outer and inner edges of the toric diagram. This is in agreement with the conjecture.  相似文献   

5.
6.
We study the BPS spectra of ${\mathcal{N}=2}$ N = 2 complete quantum field theories in four dimensions. For examples that can be described by a pair of M5 branes on a punctured Riemann surface we explain how triangulations of the surface fix a BPS quiver and superpotential for the theory. The BPS spectrum can then be determined by solving the quantum mechanics problem encoded by the quiver. By analyzing the structure of this quantum mechanics we show that all asymptotically free examples, Argyres-Douglas models, and theories defined by punctured spheres and tori have a chamber with finitely many BPS states. In all such cases we determine the spectrum.  相似文献   

7.
We discuss how N = 1 dualities in four dimensions are geometrically realized by wrapping D-branes about 3-cycles of Calabi-Yau threefolds. In this setup the N = 1 dualities for SU, SO and USp gauge groups with fundamental fields get mapped to statements about the monodromy and relations among 3-cycles of Calabi-Yau threefolds. The connection between the theory and its dual requires passing through configurations which are T-dual to the well-known phenomenon of decay of BPS states in N = 2 field theories in four dimensions. We compare our approach to recent works based on configurations of D-branes in the presence of NS 5-branes and give simple classical geometric derivations of various exotic dynamics involving D-branes ending on NS branes.  相似文献   

8.
The number of BPS bound states of D-branes on a Calabi-Yau manifold depends on two sets of data, the BPS charges and the stability conditions. For D0 and D2-branes bound to a single D6-brane wrapping a Calabi-Yau 3-fold X, both are naturally related to the Kähler moduli space \({{\mathcal M}(X)}\) . We construct unitary one-matrix models which count such BPS states for a class of toric Calabi-Yau manifolds at infinite ’t Hooft coupling. The matrix model for the BPS counting on X turns out to give the topological string partition function for another Calabi-Yau manifold Y, whose Kähler moduli space \({{\mathcal M}(Y)}\) contains two copies of \({{\mathcal M}(X)}\) , one related to the BPS charges and another to the stability conditions. The two sets of data are unified in \({{\mathcal M}(Y)}\) . The matrix models have a number of other interesting features. They compute spectral curves and mirror maps relevant to the remodeling conjecture. For finite ’t Hooft coupling they give rise to yet more general geometry \({\widetilde{Y}}\) containing Y.  相似文献   

9.
《Nuclear Physics B》2006,733(3):297-333
We examine the dynamics of extended branes, carrying lower-dimensional brane charges, wrapping black holes and black hole microstates in M and type II string theory. We show that they have a universal dispersion relation typical of threshold bound states with a total energy equal to the sum of the contributions from the charges. In near-horizon geometries of black holes, these are BPS states, and the dispersion relation follows from supersymmetry as well as properties of the conformal algebra. However they break all supersymmetries of the full asymptotic geometries of black holes and microstates. We comment on a recent proposal which uses these states to explain black hole entropy.  相似文献   

10.
11.
We study N = 1 dualities in four-dimensional supersymmetric gauge theories as the world volume theory of D4 branes with one compact direction in type IIA string theory. We generalize the previous work for SO(Nc1) × Sp(Nc2) with the superpotential W = TrX4 to the case of W = TrX4(k+1) in terms of brane configuration. We conjecture that the new dualities for the product gauge groups of SO(Nc1) × Sp(Nc2) × SO(Nc3), SO(Nc1) × Sp(Nc2) × SO(Nc3) × Sp(Nc4) and higher multiple product gauge groups can be obtained by reversing the ordering of NS5 branes and D6 branes while preserving the linking numbers. We also describe the above dualities in terms of wrapping D6 branes around 3-cycles of Calabi-Yau threefolds in type IIA string theory. The theory with adjoint matter can be regarded as taking multiple copies of NS5 brane in the configuration of brane or geometric approaches.  相似文献   

12.
We study topological string amplitudes for the FHSV model using various techniques. This model has a type II realization involving a Calabi-Yau threefold with Enriques fibres, which we call the Enriques Calabi-Yau. By applying heterotic/type IIA duality, we compute the topological amplitudes in the fibre to all genera. It turns out that there are two different ways to do the computation that lead to topological couplings with different BPS content. One of them gives the standard D0-D2 counting amplitudes, and from the other one we obtain information about bound states of D0-D4-D2 branes on the Enriques fibre. We also study the model using mirror symmetry and the holomorphic anomaly equations. We verify in this way the heterotic results for the D0-D2 generating functional for low genera and find closed expressions for the topological amplitudes on the total space in terms of modular forms, and up to genus three. This model turns out to be much simpler than the generic B-model and might be exactly solvable.  相似文献   

13.
14.
15.
We study four-dimensional quiver gauge models from F-theory compactified on fourfolds with hyper-K¨ahler structure.Using intersecting complex toric surfaces,we derive a class of N =1 quivers with charged fundamental matter placed on external nodes.The emphasis is on how local Calabi–Yau equations solve the corresponding physical constraints including the anomaly cancelation condition.Concretely,a linear chain of SU(N) groups with flavor symmetries has been constructed using polyvalent toric geometry.  相似文献   

16.
In this Ph.D. thesis, accepted at the Vrije Universiteit Brussel, we review and elaborate on a method to find the D‐brane effective action, based on BPS equations. Firstly, both for the Yang‐Mills action and the Born‐Infeld action it is shown that these configurations are indeed BPS, i.e. solutions to these equations saturate a Bogomolny bound and leave some supersymmetry unbroken. Next, we use the BPS equations as a tool to construct the D‐brane effective action and require that (a deformation of) these equations should still imply the equations of motion in more general cases. In the abelian case we managed to calculate all order in α′ four‐derivative corrections to the effective action and the BPS equations while in the non‐abelian case we obtained the effective action up to order α′4. Furthermore, we discuss a check based on the spectrum of strings stretching between intersecting branes. Finally, this Ph.D. thesis also discusses the construction of a boundary superspace which would be the first step to use the method of Weyl invariance in N = 2 superspace in order to again construct the D‐brane effective action. A more detailed summary of each section can be found in the introduction.  相似文献   

17.
We propose a string realization of the AdS4 brane in AdS5 that is known to localize gravity. Our theory is M D5 branes in the near horizon geometry of N D3 branes, where M and N are appropriately tuned.  相似文献   

18.
《Nuclear Physics B》1999,555(3):457-476
We show that a system of parallel D3 branes near a conifold singularity can be mapped onto an intersecting configuration of orthogonal branes in type IIA string theory. Using this brane configuration, we analyze the Higgs moduli space of the associated field theory. The dimension of the Higgs moduli space is computed from a geometrical analysis of the conifold singularity. Our results provide evidence for an extended s-rule. In addition, a discrepancy between the prediction of the brane configuration and the result obtained from a geometrical analysis is noted. This discrepancy can be traced back to worldsheet instanton effects.  相似文献   

19.
In this paper we study the relation between pyramid partitions with a general empty room configuration (ERC) and the BPS states of D-branes on the resolved conifold. We find that the generating function for pyramid partitions with a length n ERC is exactly the same as the D6/D2/D0 BPS partition function on the resolved conifold in particular Kähler chambers. We define a new type of pyramid partition with a finite ERC that counts the BPS degeneracies in certain other chambers. The D6/D2/D0 partition functions in different chambers were obtained by applying the wall crossing formula. On the other hand, the pyramid partitions describe T 3 fixed points of the moduli space of a quiver quantum mechanics. This quiver arises after we apply Seiberg dualities to the D6/D2/D0 system on the conifold and choose a particular set of FI parameters. The arrow structure of the dual quiver is confirmed by computation of the Ext group between the sheaves. We show that the superpotential and the stability condition of the dual quiver with this choice of the FI parameters give rise to the rules specifying pyramid partitions with length n ERC.  相似文献   

20.
In this review article we study type IIB superstring compactifications in the presence of space‐time filling D‐branes while preserving 𝒩=1 supersymmetry in the effective four‐dimensional theory. This amount of unbroken supersymmetry and the requirement to fulfill the consistency conditions imposed by the space‐time filling D‐branes lead to Calabi‐Yau orientifold compactifications. For a generic Calabi‐Yau orientifold theory with space‐time filling D3‐ or D7‐branes we derive the low‐energy spectrum. In a second step we compute the effective 𝒩=1 supergravity action which describes in the low‐energy regime the massless open and closed string modes of the underlying type IIB Calabi‐Yau orientifold string theory. These 𝒩=1 supergravity theories are analyzed and in particular spontaneous supersymmetry breaking induced by non‐trivial background fluxes is studied. For D3‐brane scenarios we compute soft‐supersymmetry breaking terms resulting from bulk background fluxes whereas for D7‐brane systems we investigate the structure of D‐ and F‐terms originating from worldvolume D7‐brane background fluxes. Finally we relate the geometric structure of D7‐brane Calabi‐Yau orientifold compactifications to 𝒩=1 special geometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号