首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
A rapid and simple method is proposed for determination of polycyclic aromatic hydrocarbons (PAH) in complex matrices such as marine biota. The method uses sonication, by means of an ultrasonic probe, as a new tool for assisted extraction, coupled with reversed-phase liquid chromatography (RP-LC) with fluorescence detection (FL) for determination of 16 US EPA priority PAH. Separation and detection of the 16 PAH were complete in 45 min by RP-LC with a C18 column and acetonitrile–water gradient elution. Multivariate optimisation of the variables affecting extraction (ultrasound radiation amplitude, sonication time, and temperature of the water-bath in which the extraction cell was placed) was conducted. The accuracy of the method was determined by analysis of a certified reference material and comparison of the results obtained with those from another method (microwave-assisted extraction and GC–MS). The new technique avoids the main problems encountered in the determination of PAH in complex matrices such as marine biota, and no clean-up step is necessary. The method was applied to determination of PAH in estuarine biota samples from the Urdaibai estuary (Biscay, Spain).  相似文献   

2.
The separation of the phenacyl esters of the fatty acids originating from a fish oil extract by means of a comprehensive analysis using silver-ion (SI) supercritical fluid chromatography (SFC) and reversed phase liquid chromatography (RP-LC) in the first and second dimensions, respectively, is described. The combination ensured a high orthogonality and peak capacity, particularly when compared to the comprehensive RP-LC × 2RP-LC separation achieved by using a configuration with two columns in parallel in the second dimension. The construction of the SI-SFC × RP-LC interface consists of two two-position/ten-port switching valves, of which one is equipped with two loops packed with octadecyl silica (ODS) particles. Compared to the SFC × RP-LC configuration described in an earlier publication, the peak capacity in the second dimension was increased. Water was not only added as make-up fluid to the SFC effluent to ensure analyte focusing, but also as rinsing medium of the loops prior to the transfer of the fractions to the second dimension. In the SFC dimension, high efficiency and loadability were obtained by coupling two wide-bore columns (4.6 mm ID) in series. Evaporative light scattering (ELSD) and ultraviolet (UV) detection with standard and high-pressure flow cells were evaluated in terms of data acquisition speed and suppression of signal interferences originating from the supercritical carbon dioxide (CO2) expansion.  相似文献   

3.
Yardım Y  Levent A  Keskin E  Sentürk Z 《Talanta》2011,85(1):441-448
Benzo[a]pyrene (BaP), a member of the polycyclic aromatic hydrocarbon (PAH) class, is one of the most potent PAH carcinogens. The electrochemical oxidation of BaP was first studied by cyclic voltammetry at the boron-doped diamond electrode in non-aqueous solvent (dimethylsulphoxide with lithium perchlorate). The compound was irreversibly oxidized in a single step at high positive potential, resulting in the well-resolved formation of a couple with a reduction and re-oxidation wave at much lower potentials. Special attention was given to the use of adsorptive stripping voltammetry together with a medium exchange procedure in aqueous and aqueous/surfactant solutions over the pH range of 2.0-8.0. The technique in aqueous solutions had little value in practice because of too small oxidation peak current. This problem was solved when surfactants were added into the sample solution, by which the oxidation peak currents of BaP were found enhanced dramatically. The employed surfactants were sodium dodecylsulfate (anionic, SDS), cetyltrimethylammonium bromide (cationic, CTAB) and Tween 80 (non-ionic). Using square-wave stripping mode, the compound yielded a well-defined voltammetric response in Britton-Robinson buffer, pH 2.0 containing 2.5 × 10−4 M SDS at +1.07 V (vs. Ag/AgCl) (after 120 s accumulation at +0.10 V). The process could be used to determine BaP in the concentration range of 16-200 nM (4.04-50.46 ng mL−1), with a detection limit of 2.86 nM (0.72 ng mL−1). This method was also applied to determine BaP in model water sample prepared by adding its different concentrations into tap water.  相似文献   

4.
A method for the determination of 16 polycyclic aromatic hydrocarbons (PAHs) in milk and related products based on direct immersion-solid phase microextraction (DI-SPME) followed by gas chromatography-mass spectrometry detection (GC-MS) has been developed. The influence of various parameters on PAH extraction efficiency was carefully monitored. Good performance (recovery, precision and quantitation limits) was attained when a PDMS/DVB fiber was immersed in the sample for 60 min at 55 °C. Detection limits ranged from 0.003 to 1.5 μg L−1 at a signal-to-noise ratio of 3, depending on the compound and the sample. The proposed method was successfully applied to infant formulas, milk and related products and the presence of both fluoranthene and pyrene in two samples was confirmed.  相似文献   

5.
Several ultrasound-based platforms for DNA sample preparation were evaluated in terms of effective fragmentation of DNA (plasmid and genomic DNA)—ultrasonic probe, sonoreactor, ultrasonic bath and the newest Vialtweeter device. The sonoreactor showed the best efficiency of DNA fragmentation while simultaneously assuring no cross-contamination of samples, and was considered the best ultrasonic tool to achieve effective fragmentation of DNA at high-throughput and avoid sample overheating. Several operation variables were studied—ultrasonication time and amplitude, DNA concentration, sample volume and sample pre-treatment—that allowed optimisation of a sonoreactor-based strategy for effective DNA fragmentation. Optimal operating conditions to achieve DNA fragmentation were set to 100% ultrasonic amplitude, 100 μL sample volume, 8 min ultrasonic treatment (2 min/sample) for a DNA concentration of 100 μg mL−1. The proposed ultrasonication strategy can be easily implemented in any laboratory setup, providing fast, simple and reliable means for effective DNA sample preparation when fragmentation is critical for downstream molecular detection and diagnostics protocols.  相似文献   

6.
In this work, a sensitive and selective detection method based on fluorescence resonance energy transfer (FRET) was developed for analyzing thiol compounds by using a novel fluorescent probe. The new fluorescent probe contains a disulfide bond which selectively reacts with nucleophilic thiolate through the thiol-disulfide exchange reaction. An obvious fluorescence recovery can be observed upon addition of the thiol compound in the fluorescent probe solution due to the thiol-disulfide exchange reaction and the destruction of FRET. This novel probe was successfully used to determine dithiothreitol (DTT), glutathione (GSH) and cysteine (Cys). The limits of detection (LOD) were 2.0 μM for DTT, 0.6 μM for GSH, and 0.8 μM for Cys. This new detection method was further investigated in the analysis of compound amino acid injection.  相似文献   

7.
As a consequence of the Prestige shipwreck occurred in the Northeast Atlantic Ocean in November 2002, the need for establishing the environmental impact caused by metals has been of primary concern. Among the different metals contained in the fuel spill, V and Ni are particularly of interest since they appear at relatively high concentration in the original fuel. Biomonitoring of V and Ni using wild mussels (Mytilus edulis) collected along the Galician Coast (NW Iberian Peninsula) has been performed. Ultrasound-assisted extraction of V and Ni from dried mussel tissues using probe sonication allowed a fast solid-liquid extraction thus facilitating sample preparation from large sample batches used for biomonitoring. V and Ni were determined in shellfish caught in the Galician littoral and tar balls from the Prestige spill by electrothermal-atomic absorption spectrometry and inductively coupled plasma-optical emission spectrometry, respectively. A Plackett-Burman saturated design was applied for screening optimization of variables influencing the ultrasound-assisted extraction of V and Ni from shellfish. Efficient extraction of both metals was obtained from slurries prepared in 2 mL capacity sample vials (10 mg sample with a particle size less than 100 μm) using a 3% (v/v) HNO3 diluent and subjected to probe sonication (3 min; 30% vibrational amplitude of the probe). The method was successfully validated by means of three certified reference materials: NRCC-TORT-2 Lobster hepatopancreas, NIST-SRM 1566b Oyster tissue and NIST-SRM 2977 Mussel tissue. The detection limit (LOD) of V and Ni in the marine biological tissues, calculated according to the 3σ criterion, were 0.24 μg g−1 and 0.15 μg g−1 for V and Ni, respectively. V and Ni concentrations in M. edulis were in the range 1.7-4.8 and 0.8-2.8 μg g−1, respectively. Whilst no significant variations in Ni contents were observed in regard to reference values, an important increase in V concentration is observed at some sampling points, thereby indicating bioaccumulation.  相似文献   

8.
In this study a method for the determination of cadmium in fuel alcohol using solid-phase extraction with a flow injection analysis system and detection by flame atomic absorption spectrometry was developed. The sorbent material used was a vermicompost commonly used as a garden fertilizer. The chemical and flow variables of the on-line preconcentration system were optimized by means of a full factorial design. The selected factors were: sorbent mass, sample pH, buffer concentration and sample flow rate. The optimum extraction conditions were obtained using sample pH in the range of 7.3-8.3 buffered with tris(hydroxymethyl)aminomethane at 50 mmol L−1, a sample flow rate of 4.5 mL min−1 and 160 mg of sorbent mass. With the optimized conditions, the preconcentration factor, limit of detection and sample throughput were estimated as 32 (for preconcentration of 10 mL sample), 1.7 μg L−1 and 20 samples per hour, respectively. The analytical curve was linear from 5 up to at least 50 μg L−1, with a correlation coefficient of 0.998 and a relative standard deviation of 2.4% (35 μg L−1, n = 7). The developed method was successfully applied to spiked fuel alcohol, and accuracy was assessed through recovery tests, with recovery ranging from 94% to 100%.  相似文献   

9.
An electrochemical DNA biosensor for human papillomavirus (HPV) 16 detection has been developed. For this proposed biosensor, l-cysteine was first electrodeposited on the gold electrode surface to form l-cysteine film (CYSFILM). Subsequently, HPV16-specific probe was immobilized on the electrode surface with CYSFILM. Electrochemistry measurement was studied by differential pulse voltammetry method (DPV). The measurement was based on the reduction signals of methylene blue (MB) before and after hybridization either between probe and synthetic target or extracted DNA from clinical samples. The effect of probe concentration was analyzed and the best results were seen at 1000 nM. The hybridization detection presented high sensitivity and broad linear response to the synthetic-target concentration comprised between 18.75 nM and 250 nM as well as to a detection limit of 18.13 nM. The performance of this biosensor was also investigated by checking probe-modified electrode hybridization with extracted DNA from samples. The results showed that the biosensor was successfully developed and exhibited high sensitivity and satisfactory selectivity to HPV16. These results allow for the possibility of developing a new portable detection system for HPVs and for providing help in making an effective diagnosis in the early stages of infection.  相似文献   

10.
The present method described the kinetic determination of nabumetone, a non-steroidal anti-inflammatory drug, by means of micellar-stabilized room temperature phosphorescence (MS-RTP), using the stopped-flow mixing technique. This methodology enables us to determine analytes in complex matrices without the need for a tedious separation process, as well as greatly diminishes the time for the analysis.Firstly, chemical and instrumental variables affecting the rate of phosphorescent development and the intensity of the signal, were found using a simplex optimization procedure. As application, nabumetone was determined in commercial Spanish pharmaceutical preparations.With the proposed method, the maximum signal of phosphorescence appears in only 10 s once the sample has been prepared, and the maximum slope of the kinetic curve, corresponding with the maximum rate of the phosphorescence development, was measured at λex = 271 nm and λem = 520 nm. The overall least-squares regression to find the straight line that fitted the experimental data, the detection limit, the repeatability and the standard deviation for replicate sample, were also determined.The proposed method was validated versus a HPLC method with satisfactoty results.  相似文献   

11.
Nuno Ratola  Damià Barceló 《Talanta》2009,77(3):1120-1128
Two different extraction strategies (microwave-assisted extraction (MAE) and ultrasonic extraction (USE)) were tested in the extraction of the 16 US Environmental Protection Agency (EPA) polycyclic aromatic hydrocarbons (PAHs) from pine trees. Extraction of needles and bark from two pine species common in the Iberian Peninsula (Pinus pinaster Ait. and Pinus pinea L.) was optimized using two amounts of sample (1 g and 5 g) and two PAHs spiking levels (20 ng/g and 100 ng/g). In all cases, the clean-up procedure following extraction consisted in solid-phase extraction (SPE) with alumina cartridges. Quantification was done by gas chromatography (GC) with mass spectrometry (MS), using five deuterated PAH surrogate standards as internal standards. Limits of detection were globally below 0.2 ng/g. The method was robust for the matrices studied regardless of the extraction procedures. Recovery values between 70 and 130% were reached in most cases, except for high molecular weight PAHs (indeno[1,2,3-cd]pyrene, dibenzo[a,h]anthracene and benzo[ghi]perylene). A field study with naturally contaminated samples from eight sites (four in Portugal and four in Catalonia, Spain) showed that needles are more suitable biomonitors for PAHs, yielding concentrations from 2 to 17 times higher than those found in bark. The levels varied according to the sampling site, with the sum of the individual PAH concentrations between 213 and 1773 ng/g (dry weight). Phenanthrene was the most abundant PAH, followed by fluoranthene, naphthalene and pyrene.  相似文献   

12.
A simple and sensitive automated method, consisting of in-tube solid-phase microextraction (SPME) coupled with high-performance liquid chromatography-fluorescence detection (HPLC-FLD), was developed for the determination of 15 polycyclic aromatic hydrocarbons (PAHs) in food samples. PAHs were separated within 15 min by HPLC using a Zorbax Eclipse PAH column with a water/acetonitrile gradient elution program as the mobile phase. The optimum in-tube SPME conditions were 20 draw/eject cycles of 40 μL of sample using a CP-Sil 19CB capillary column as an extraction device. Low- and high-molecular weight PAHs were extracted effectively onto the capillary coating from 5% and 30% methanol solutions, respectively. The extracted PAHs were readily desorbed from the capillary by passage of the mobile phase, and no carryover was observed. Using the in-tube SPME HPLC-FLD method, good linearity of the calibration curve (r > 0.9972) was obtained in the concentration range of 0.05–2.0 ng/mL, and the detection limits (S/N = 3) of PAHs were 0.32–4.63 pg/mL. The in-tube SPME method showed 18–47 fold higher sensitivity than the direct injection method. The intra-day and inter-day precision (relative standard deviations) for a 1 ng/mL PAH mixture were below 5.1% and 7.6% (n = 5), respectively. This method was applied successfully to the analysis of tea products and dried food samples without interference peaks, and the recoveries of PAHs spiked into the tea samples were >70%. Low-molecular weight PAHs such as naphthalene and pyrene were detected in many foods, and carcinogenic benzo[a]pyrene, at relatively high concentrations, was also detected in some black tea samples. This method was also utilized to assess the release of PAHs from tea leaves into the liquor.  相似文献   

13.
A novel electrochemical sensing strategy was developed for ultrasensitive and rapid detection of Salmonella by combining the rolling circle amplification with DNA–AuNPs probe. The target DNA could be specifically captured by probe 1 on the sensing interface. Then the circularization mixture was added to form a typical sandwich structure. In the presence of dNTPs and phi29 DNA polymerase, the RCA was initiated to produce micrometer-long single-strand DNA. Finally, the detection probe (DNA–AuNPs) could recognize RCA product to produce enzymatic electrochemical signal. Under optimal conditions, the calibration curve of synthetic target DNA had good linearity from 10 aM to 10 pM with a detection limit of 6.76 aM (S/N = 3). The developed method had been successfully applied to detect Salmonella as low as 6 CFU mL−1 in real milk sample. This proposed strategy showed great potential for clinical diagnosis, food safety and environmental monitoring.  相似文献   

14.
Linear alkylbenzene sulphonates (LAS) and polycyclic aromatics hydrocarbons (PAH) are organic pollutants in sewage sludge which will have to be monitored in the European Union according to the third draft of a future sludge directive. In the present work, an analytical method for the simultaneous extraction of 4 LAS homologues and 16 PAH congeners in sludge from wastewater treatment plants is proposed to improve the routine analysis of these compounds in sludge samples. The method involves sonication assisted extraction, clean-up and preconcentration by solid phase extraction, and determination by high-performance liquid chromatography with ultraviolet diode array (UV-DAD) and fluorescence (FLD) detectors. Average recoveries were 87% for LAS and 76% for PAH, with relative standard deviations below 13%. Limits of quantification of LAS and PAH were in the range from 13 to 56 mg kg−1 and from 80 to 650 μg kg−1, respectively, when using UV-DAD. Limits of quantification of LAS and PAH were in the range 5-18 mg kg−1 and from 1 to 150 μg kg−1, respectively, when using FLD. The applicability of the proposed method was evaluated by the determination of these compounds in sludge from wastewater treatment plants in Seville (South Spain).  相似文献   

15.
A liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based method for the detection of pesticides in tap and treated wastewater was developed and validated according to the ISO/IEC 17025:1999. Key features of this method include direct injection of 100 μL of sample, an 11 min separation by means of a rapid resolution liquid chromatography system with a 4.6 mm × 50 mm, 1.8 μm particle size reverse phase column and detection by electrospray ionization (ESI) MS-MS. The limits of detection were below 15 ng L−1 and correlation coefficients for the calibration curves in the range of 30-2000 ng L−1 were higher than 0.99. Precision was always below 20% and accuracy was confirmed by external evaluation. The main advantages of this method are direct injection of sample without preparative procedures and low limits of detection that fulfill the requirements established by the current European regulations governing pesticide detection.  相似文献   

16.
In the present work, 2,2′:6′,2″-Terpyridine (terpy), a substance with very poor aqueous solubility, was dissolved in water, after formation of its inclusion complex with hydroxypropyl-β-cyclodextrin (HPβCD), in a 1:3 stoichiometry. The obtained [terpy:(HPβCD)3] supramolecule, with enhanced aqueous solubility, enables its usage as a reagent at RP-LC methods. It was found that, terpy after inclusion complexation retains unaffected the ability of binding to Fe2+. It was also observed that, the stable, reddish-purple [Fe(terpy)]2+ complex was formed quantitatively in a wide pH range (2-9). Subsequently, iron as active substance or impurity in a drug product, can be determined through UV-vis measurements of [Fe(terpy)2]2+. Speed, sensitivity and selectivity are the most important features of the isocratic RP-LC method, developed to determine iron in pharmaceutical formulations. The duration of the chromatographic separation was less than 4.0 min. The method was linear, precise and accurate from 0.17 to 2.2 mg l−1 of iron and the detection limit was found to be 5 μg l−1. The absorbance at 318 and 552 nm allowed the quantitation of Fe (II) and Fe (III) after reduction, as well as of total Fe (II + III). Moreover, there were no interferences from Fe3+, Ni2+, Co2+ or Cu2+.  相似文献   

17.
An improved method for the determination of metacrate in water samples has been developed using dispersive liquid-liquid microextraction (DLLME) prior to liquid chromatography analysis. The variables of interest, such as the volume of extraction solvent and disperser solvent, salt effect, sample volume, and extraction time in the DLLME process, were optimized with the aid of response surface methodology and experimental design (RSM). Firstly, an orthogonal array design (OAD) was used to choose the significant variables for the optimization. Secondly, the significant factors were optimized by using a central composite design (CCD) and the quadratic model between the dependent and the independent variables was built. The proposed method showed good agreement between the experimental data and predictive value, and it has been successfully employed to determine metacrate in water samples. The limit of detection was 1 ng mL−1 and, repeatability of the method, described as relative standard deviation, was 5.7% (n = 5).  相似文献   

18.
Zhang H  Wang M  Gao Q  Qi H  Zhang C 《Talanta》2011,84(3):771-776
A novel fluorescent method for the detection of single nucleotide polymorphism (SNP) was developed using a hairpin DNA containing nucleotide base analog pyrrolo-deoxycytidine (P-dC) as a fluorescent probe. This fluorescent probe was designed by incorporating a fluorescent P-dC into a stem of the hairpin DNA, whose sequence of the loop moiety complemented the target single strand DNA (ss-DNA). In the absence of the target ss-DNA, the fluorescent probe stays a closed configuration in which the P-dC is located in the double strand stem of the fluorescent probe, such that there is weak fluorescence, attributed to a more efficient stacking and collisional quenching of neighboring bases. In the presence of target ss-DNA, upon hybridizing the ss-DNA to the loop moiety, a stem-loop of the fluorescent probe is opened and the P-dC is located in the ss-DNA, thus resulting in strong fluorescence. The effective discrimination of the SNP, including single base mismatch ss-DNA (A, T, G) and double mismatch DNA (C, C), against perfect complementary ss-DNA was achieved by increased fluorescence intensity, and verified by thermal denaturation and circular dichroism spectroscopy. Relative fluorescence intensity had a linear relationship with the concentration of perfect complementary ss-DNA and ranged from 50 nM to 3.0 μM. The linear regression equation was F/F0 = 2.73 C (μM) + 1.14 (R = 0.9961) and the detection limit of perfect complementary ss-DNA was 16 nM (S/N = 3). This study demonstrates that a hairpin DNA containing nucleotide base analog P-dC is a promising fluorescent probe for the effective discrimination of SNP and for highly sensitive detection of perfect complementary DNA.  相似文献   

19.
A signal enhancing method allowing highly sensitive detection of E. coli 16s rRNA was developed using peptide nucleic acid (PNA) as a capture probe and a surface plasmon resonance (SPR) sensor as a detector. 16s rRNA has been used as a genetic marker for identification of organisms, and can be analyzed directly without PCR amplification due to the relatively high number of copies. PNA has a neutral backbone structure, therefore hybridization with 16s rRNA results in the ionic condition being changed from neutral to negative. A cationic Au nanoparticle was synthesized and used for signal amplification by ionic interaction with 16s rRNA hybridized on the PNA probe-immobilized SPR sensor chip. This method resulted in a detection limit of E. coli rRNA of 58.2 ± 1.37 pg mL−1. Using this analytical method, Staphylococcus aureus was detected without purification of rRNA.  相似文献   

20.
The determination of polycyclic aromatic hydrocarbon (PAH) metabolites in human urine is the method of choice for assessing exposure to carcinogenic compounds. The objective of this study was the development of a comprehensive two-dimensional gas chromatography (GC × GC) method using a flame ionisation detector (FID) to simultaneously determine 10 hydroxylated PAH. The method was based on enzymatic deconjugation, liquid–liquid extraction, and trimethylsilyl (TMS) derivatization of the analytes by microwave heating. Satisfactory separation was achieved. The coefficient of variance was 3.8–12.8%. LOD was 0.03–0.18 μg/L, and LOQ was 0.1–0.5 μg/L. The mean recovery was 76%. The method was applied to the analysis of urine from smokers and non-smokers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号