首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 861 毫秒
1.
We performed the quantification of phosphorus in deoxynucleotides using capillary electrophoresis (CE) and micro-HPLC (μHPLC) hyphenated with inductively coupled plasma mass spectrometry (ICP-MS). DNA and its component units have conventionally been determined by photometry; however, more selective and sensitive methods are needed for small biological samples. CE and μHPLC offer the advantages of good separation and small consumption of samples, and ICP-MS is a highly sensitive technique for the determination of a chemical element. Therefore, we have developed an interface device for combining CE and μHPLC with ICP-MS for quantifying nucleotides based on phosphorus content. The interface utilizes 4.5 μL/min for nebulizing and effective introduction of the sample into ICP. The samples of nucleotides and free phosphoric acid were well separated in the CE–ICP-MS measurement, and the calibration curves (1–100 μg/mL) of the nucleotides showed a linear (R2 > 0.999) increase in intensity. Similarly, the samples of nucleotides were baseline separated using μHPLC–ICP-MS, and the calibration curves of the nucleotides were linear (R2 > 0.998). The detection limits of these species and phosphorus in nucleotides using CE–ICP-MS and μHPLC–ICP-MS were 0.77–6.5 ng/mL and 4.0–6.5 ng/mL, respectively. These values were about one or two orders lower than those in a previous report. The sample volumes of these experiments were calculated to be about 10 nL and 50 nL per analysis. Therefore, these analytical methods have the potential to be useful for the determination of biological samples, such as DNA and RNA molecules.  相似文献   

2.
A capillary electrophoresis (CE) and a high performance liquid chromatography (HPLC) method are described for the simultaneous determination of ethylenediaminetetraacetic acid (EDTA), S,S′-ethylenediaminedisuccinic acid (EDDS) and R,S-iminodisuccinic acid (IDS) complexing agents as their Fe(III) complexes in cosmetics like shower cream and foam bath. The non-biodegradable EDTA is used in combination with biodegradable analogues like EDDS and IDS in many commercial products. The HPLC method involves separation by reversed-phase ion pair chromatography on a C18 column using methanol-formate buffer (20 mM tetrabutylammonium hydrogen sulfate, 15 mM sodium formate adjusted to pH 4.0 with formic acid) (10:90, v/v) as mobile solvent at a flow rate of 0.8 mL min−1 at 24 °C using UV detection at 240 nm. The CE separation was performed in a fused silica capillary of 50 μm i.d. with the total length of 50 cm with a 10 mM MES and MOPSO (pH 5.5) at an applied voltage of −25 kV. The samples were introduced by applying a 50 mbar pressure for 2 s. Absorbances at 215 and 225 nm were monitored for the detection of the complexes. The methodology performance of the two methods was evaluated in terms of linearity, limit of detection (LOD), limit of quantitation (LOQ) and reproducibility. The LOD values obtained from HPLC are low when compared with CE. The applicability of both the methods was demonstrated for the analysis of cosmetic products such as shower cream and foam bath. The results obtained by both CE and HPLC were found to be comparable and in good agreement.  相似文献   

3.
A simple and rapid liquid chromatographic method for enantioselective separation and determination of R-(+) and S-(−) enantiomers of rabeprazole in drugs and pharmaceuticals using photo diode array (PDA) and polarimetric detectors connected in series was developed. Chiralpak AD-H (250 mm × 4.6 mm) 5 μm column packed with amylose tris(3,5-dimethylphenyl carbamate) as a stationary phase and the mobile phase containing n-hexane:ethanol:2-propanol(75:15:10, v/v/v) in an isocratic mode has yielded baseline separation with resolution greater than 3.0 at 40 °C. Effects of ethanol, 2-propanol and temperature on separation were studied for optimum resolution. Lansoprazole sulphone was used as an internal standard (IS) for quantitative determination of individual enantiomers in bulk drugs as well as pharmaceutical formulations. The method was validated in terms of accuracy, precision and linearity according to ICH guidelines. The linearity of the method was studied in the range of 0.5-50 μg/ml and the r2 was >0.9997. The inter- and intra-day precision of assay were determined (R.S.D. < 1%) and the recoveries were in the range of 99.63-100.22% with <1% R.S.D. The limits of detection (LOD) and quantification (LOQ) were 0.02 μg/ml and 0.07 μg/ml for both the enantiomers, respectively.  相似文献   

4.
Intermolecular association and ion-pair formation, respectively, between a cationic chiral selector, viz. o-9-(tert-butylcarbamoyl) quinine (CQN), and the both enantiomers of anionic N-(3,5-dinitrobenzoyl)leucine, (R)-DNB-Leu and (S)-DNB-Leu, were investigated by affinity capillary electrophoresis (ACE). Thus, binding constants of the both diastereomeric ion-pairs, (R) and (S)-DNB-Leu/CQN associates, were determined by different experimental setups and correction of nonlinear effects. A reciprocal setup was employed for the high-affinity (S)-enantiomer, and the experimental mobility data obtained for CQN at variable (S)-DNB-Leu concentrations in the background electrolyte were linearized and evaluated by advanced statistical model. A binding constant of KS=125.1 l mol−1 was afforded. The constant for the (R)-enantiomer, which is outside the range suitable for direct affinity CE, was obtained from indirect affinity CE utilizing the separation of the DNB-Leu racemate at a single appropriate CQN concentration in the BGE (resolution method) taking advantage of the known constant for the (S)-enantiomer yielding a binding constant of KR=2.51 l mol−1. Thereby, the so-called “constant time method” was adopted for the required precise measurement of the effective mobilities of the both enantiomers. A combined approach of reciprocal affinity CE with racemic DNB-Leu as additive and the resolution method confirmed the results. The resulting constants evidence excellent enantioselectivity of the tert-butylcarbamoyl derivative of the cinchona alkaloid quinine as chiral selector for N-(3,5-dinitrobenzoyl) derivatives of amino acids.  相似文献   

5.
This paper demonstrates that capillary electrophoresis (CE) can be employed for characterizing the sizes of nanometer-scale gold particles. We characterized the gold nanoparticles by effecting CE separation using a buffer of SDS (70 mM) and 3-cyclohexylamino-1-propanesulfonic acid (CAPS; 10 mM) at pH 11.0 and an applied voltage of 18 kV and obtained a linear relationship (R2 > 0.99) between electrophoretic mobilities and size for nanoparticles whose diameters fall in the regime from 5.0 ± 0.5 to 41.2 ± 3.3 nm; the relative standard deviations of these electrophoretic mobilities are <0.8%. We evaluated the feasibility of employing these separation conditions for the size characterization by of gold nanoparticle samples that were synthesized by a rapid microwave heating method. We confirmed that this CE method is a valid one for size characterization by comparing the results obtained by CE with those provided by scanning electron microscopy (SEM); a good correlation exists between these two techniques. Our results demonstrate that CE can be employed to accelerate the analysis of the sizes of nanomaterials.  相似文献   

6.
A direct and stereospecific capillary zone electrophoresis (CZE) method for quantification ibuprofen enantiomers in biological matrices: human serum and urine, has been developed. Chiral separation of the enantiomers of ibuprofen and (+)-S-indobufen [(+)-S-INDB, internal standard, IS] was obtained in an uncoated silica capillary filled with a background electrolyte (BGE), consisted of heptakis 2,3,6-tri-O-methyl-β-cyclodextrin (TM-β-CD) in buffer of pH 5.0. The complete enantioselective analysis of ibuprofen and its 1-hydroxy metabolite confirmed appropriate specificity of the method. The electrophoretic parameters: electroosmotic (μEOF) and electrophoretic (μep) mobility and resolution factor (Rs) were determined. Extraction procedures with organic solvent and solid phase extraction (SPE) with C18 stationary phase for isolation of enantiomers from biological fluids were compared. SPE method for further studies was chosen. Stereoselective extraction of IBP enantiomers from serum at basic pH has been discovered. Validation of the method was carried out. Calibration curves of ibuprofen enantiomers were linear in the range of 0.1-25.0 μg/ml in serum and of 0.5-250.0 μg/ml in urine. Recovery of both enantiomers from serum and urine amounted 74-86 and 90-98%, respectively. Intra- and inter-day measurement precision and accuracy were below 15%. Limits of detection for IBP enantiomers amounted 0.05 and 0.25 μg/ml in samples of serum and urine, respectively. Limit of quantitation was also estimated. IBP enantiomers proved to be stable following three freeze and thaw cycles and during storage in autosampler at ambient temperature. The validated methods enable pharmacokinetic studies of enantiomers in both media. The elaborated HPCE method can be alternative to HPLC.  相似文献   

7.
Recently, amino acid ionic liquids (AAILs) have attracted much research interest. In this paper, we present the first application of AAILs in chiral separation based on the chiral ligand exchange principle. By using 1‐alkyl‐3‐methylimidazolium L ‐proline (L ‐Pro) as a chiral ligand coordinated with copper(II), four pairs of underivatized amino acid enantiomers—dl ‐phenylalanine (dl ‐Phe), dl ‐histidine (dl ‐His), dl ‐tryptophane (dl ‐Trp), and dl ‐tyrosine (dl ‐Tyr)—were successfully separated in two major chiral separation techniques, HPLC and capillary electrophoresis (CE), with higher enantioselectivity than conventionally used amino acid ligands (resolution (Rs)=3.26–10.81 for HPLC; Rs=1.34–4.27 for CE). Interestingly, increasing the alkyl chain length of the AAIL cation remarkably enhanced the enantioselectivity. It was inferred that the alkylmethylimidazolium cations and L ‐Pro form ion pairs on the surface of the stationary phase or on the inner surface of the capillary. The ternary copper complexes with L ‐Pro are consequently attached to the support surface, thus inducing an ion‐exchange type of retention for the dl ‐enantiomers. Therefore, the AAIL cation plays an essential role in the separation. This work demonstrates that AAILs are good alternatives to conventional amino acid ligands for ligand‐exchange‐based chiral separation. It also reveals the tremendous application potential of this new type of task‐specific ILs.  相似文献   

8.
Anna Schweifer 《Tetrahedron》2008,64(32):7605-7610
[D2]Methanol was converted to the carbamate derived from 2,2,6,6-tetramethylpiperidine. It was metalated with s-BuLi/TMEDA at −78 °C with a high primary kinetic isotope effect to give an α-oxymethyllithium, which was silylated with chlorodimethylphenylsilane. The silylmethyl carbamate formed was lithiated and borylated with the borate derived from tert-butanol and (R,R)-1,2-dicyclohexylethane-1,2-diol to give diastereomeric boronates, which were separated by preparative HPLC and can in principle be converted to enantiopure chiral methanols. Thus, both enantiomers are easily accessible in nine linear steps.  相似文献   

9.
A compact type-I coil planet centrifuge has been developed for performing counter-current chromatography. It has a revolution radius of 10 cm and a column holder height of 5 cm compared with 37 and 50 cm in the original prototype, respectively. The reduction in the revolution radius and column length permits application of higher revolution speed and more stable balancing of the rotor which leads us to learn more about its performance and the future potential of type-I coil planet centrifuge. The chromatographic performance of this apparatus was evaluated in terms of retention of the stationary phase (Sf), peak resolution (Rs), theoretical plate (N) and peak retention time (tR). The results of the experiment indicated that increasing the revolution speed slightly improved both the retention of the stationary phase and the peak resolution while the separation time is remarkably shortened to yield an excellent peak resolution at a revolution speed of 800 rpm. With a 12 ml capacity coiled column, DNP-DL-glu, DNP-β-ala and DNP-l-ala were resolved at Rs of 2.75 and 2.16 within 90 min at a flow rate of 0.4 ml/min. We believe that the compact type-I coil planet centrifuge has a high analytical potential.  相似文献   

10.
A simple chiral high-performance liquid chromatography (HPLC) method with ultraviolet (UV) and circular dichroism (CD) detection was developed and validated for measuring benalaxyl enantiomers using (R,R) Whelk-O 1 column. The effects of mobile phase composition and column temperature on the entioseparation were investigated. A CD detector was used to determine the elution order of the enantiomers. Excellent resolution was easily obtained using n-hexane-polar organic alcohols mobile phase. The chiral recognition mechanism was also discussed. Based on the developed chiral HPLC method, enantioselective analysis methods for this fungicide in environment matrix (soil and water) were developed and validated. Good linearities were obtained over the concentration range of 0.25-25 mg L−1 for both enantiomers. Liquid-liquid extraction and solid phase extraction (SPE) were used for the enrichment and cleanup of soil and water samples. Recoveries for the two enantiomers were 79-91% at 0.02, 0.04 and 0.2 mg kg−1 levels from soil, and 89-101% at 0.0025, 0.01 and 0.05 mg L−1 levels from water. Run-to-run and day-to-day assay precisions were below 10% for both enantiomers at concentrations of 0.5, 1 and 5 mg L−1. Individual detection limits of the two enantiomers were both 2 ng. Limits of detection (LOD) were 0.004 mg kg−1 in soil and 0.001 mg L−1 in water.  相似文献   

11.
In the present study, a capillary electrophoresis method using high concentration of amylose solutions as separation medium has been developed with the aid of dimethyl sulfoxide (DMSO) as co-solvent. The best buffer conditions for primaquine, trihexyphenidyl (THP), sulconazole and cetirizine enantiomers were optimized as 20 mM sodium phosphate buffer with DMSO/water (40/60, v/v) as solvent at a pH of 3.0, containing 10% (w/v) amylose. Partial-filling and semi-permanent coating techniques were used considering the influences of DMSO on UV detection. High chiral resolution for THP enantiomers was obtained showing good chiral separation capacity of this method. The method showed good linearity (R2 > 0.998) over the concentration range of 0.50 and 2.00 mg L−1 for all the enantiomers. The detection limits for the tested enantiomers were in the range from 0.05 to 0.12 mg L−1. The linear calibration models were proven to be adequate for the experimental data by lack-of-fit test. The intra-assay precision, inter-day precision and accuracy were all evaluated to be acceptable. Separation and determination of THP enantiomers in rabbit blood were also carried out.  相似文献   

12.
A rapid method for the enantiomeric purity determination of efaroxan has been developed by capillary electrophoresis (CE) using a dual cyclodextrin (CD) system. The influence of the nature and the concentration of CDs on separation parameters has been studied. High resolution (Rs = 7) and peak efficiency (104 000-121 000 theoretical plates) values were obtained for efaroxan enantiomers by adding two cyclodextrins, one neutral (7.5 mM DM-β-CD) and the other negatively charged (3 mM CM-β-CD) to the running buffer composed of 100 mM phosphoric acid-triethanolamine (pH 3). These resolution and peak efficiencies values allowed the quantitation of the (S)-enantiomer of efaroxan at very low enantiomeric excess even if the minor component migrates after the major one. This method was fully validated for the enantiomeric impurity determination of the (S)-form of efaroxan at the 0.05% level. Calibration curve, expressed by the peak areas ratio versus the enantiomeric purity was linear over the 0.05-1% enantiomeric impurity range (r2 = 0.9996). Limits of detection (LOD) and quantification (LOQ), expressed in term of (S)-enantiomer impurity were 0.02% and 0.05%, respectively. The accuracy of the method at 0.12%, 0.50% and 0.80% enantiomeric impurity levels for the (S)-form were determined. Recoveries were in 94-102% range for each quality control sample and were determined with good precision (intra-day R.S.D. = 3.54%, inter-day R.S.D. = 5.33%).  相似文献   

13.
A gradient kinetic plot method is used for theoretical characterisation of the performance of polymeric particulate anion exchange columns for gradient separations of small inorganic anions. The method employed requires only information obtained from a series of isocratic column performance measurements and in silico predictions of retention time and peak width under gradient conditions. Results obtained under practically constrained conditions provide parameters for the generation of high peak capacities and rapid peak production for fast analysis to be determined. Using this prediction method, a maximum theoretical peak capacity of 84 could be used to achieve separation of 26 components using a 120 min gradient (Rs > 1). This approach provides a highly convenient tool for development of both mono- and multidimensional ion chromatography (IC) methodologies as it yields comprehensive understanding of the influence of gradient slope, analysis time, column length and temperature upon kinetically optimised gradient performance.  相似文献   

14.
Capillary electrophoresis (CE) coupled with fiber-optic light-emitting diode-induced fluorescence detection has been developed for the separation of tyrosine (Tyr) enantiomers. R(−)-4-(3-isothiocyanatopyrrolidin-1-yl)-7-(N,N-dimethylaminosulfonyl)-2,1,3-benzoxadiazole was used as a chiral fluorescence tagged reagent for derivatization of Tyr. The effect of pH, running buffer concentration and applied voltage on enantioselectivity has been investigated. The optimum CE conditions are 15 mmol/L borate running buffer (pH 10.5) and 14-kV applied voltage. Good reproducibility was obtained with coefficient of variation (n = 7) of migration time and peak area less than 0.2 and 2.0%, respectively. The limits of detection of d- and l-Tyr derivatives were 2.9 and 2.2 μmol/L (S/N = 3), respectively. The proposed method has been successfully applied to the determination of Tyr in a commercial amino acid oral solution.  相似文献   

15.
The combined use of chiral ionic liquids (CILs) and conventional chiral selectors (CSs) in CE, to establish a synergistic system, has proven to be an effective approach for the separation of enantiomeric pairs. In this study, a new CE method was developed, employing a binary system of a CS, either a cyclodextrin (CD) or a cyclofructan (CF), and a chiral amino acid ester‐based ionic liquid (AAIL), for the chiral separation of four basic, acidic and zwitterionic drug compounds. In particular, the enantioseparation of two anticoagulants, warfarin (WAR) and coumachlor (COU), a non‐opioid analgesic, nefopam (NEF) and a third‐generation antihistamine, fexofenadine (FXD), was examined, by supporting the BGE with a CS and the chiral AAIL L‐alanine tert butyl ester lactate (L‐AlaC4Lac). Parameters, such as the type of the CS, the concentration of both the CS and L‐AlaC4Lac, and the BGE pH, were methodically examined in order to optimize the chiral separation of each analyte. It was observed that, in some cases, the addition of the AAIL into the BGE improved both resolution (Rs) and efficiency (N) significantly. In other cases, the synergistic effect enabled baseline separation of analyte enantiomers, at a much lower concentration of the CS. Finally, after optimization of separation conditions, baseline separations (Rs>1.5) of all four analytes were achieved in less than 5 min.  相似文献   

16.
Recently, oversulfated chondroitin sulfate (OSCS) present in certain lots of heparin was identified as the toxic contaminant responsible for severe side effects following intravenous heparin administration. The United States Pharmacopeia (USP) and European Pharmacopeia (Eur.Ph.) announced an immediate revision of their monographs for heparin sodium by adding two US Food and Drugs Administration-recommended tests for OSCS based on nuclear magnetic resonance and capillary electrophoresis (CE). However, the proposed CE method provides only partial separation of the OSCS contaminant from heparin, thereby hindering appropriate impurity profiling. Here we present an improved CE method that is especially useful for the reliable quantification of OSCS in heparin samples, but also allows determination of the common impurity dermatan sulfate (DS). Parameters such as type and concentration of background electrolyte, capillary temperature, sample concentration and injection volume were investigated and optimized. Enhancement of the OSCS–heparin separation was achieved by using high concentrations of Tris phosphate (pH 3.0) as background electrolyte. High currents and excessive Joule heating were prevented by employing fused-silica capillaries with an internal diameter of 25 μm. Good separations of OSCS, heparin and DS are obtained within 17 min. The method permits injection of relatively high heparin concentrations (up to 50 mg/ml) and large sample volumes (up to 5% of the capillary volume) allowing OSCS and DS determination in heparin down to the 0.05% and 0.5% (w/w) level, respectively. The CE method is shown to be repeatable and linear (R2 > 0.99) for OSCS, heparin and DS. CE analyses of OSCS-contaminated heparin samples and different heparin standards further demonstrate the utility of the method.  相似文献   

17.
In the present study, baseline separation of the enantiomers of 16 β-carboline derivatives was successfully achieved using both capillary electrophoresis (CE) and high-performance liquid chromatography (HPLC) techniques in short run times (<15?min) and thus permit the determination of enantiomeric excess. In HPLC methodology, cellulose chiral stationary phase (Chiralcel OD-H) was used with a binary mobile phase constituted of n-hexane/ethanol 85/15 leading to a resolution factor of 12.6 in 15?min. Preparative HPLC allowed to obtain pure enantiomers of two compounds. In CE, chiral selectivity was developed with an in-capillary stacking strategy using anionic (highly sulfated-γ) cyclodextrins 5% (w/v) as chiral selectors and a 60?mM phosphate buffer (pH 2.5) resulting in a resolution of 10.26 in 14?min of analysis. The analytical characteristics of the two developed methods were studied in terms of repeatability, limits of detection and limits of quantification showing their suitability to be extended to all the other molecules.  相似文献   

18.
《Analytica chimica acta》2004,507(2):171-178
In the last years, capillary electrophoresis (CE) has gained considerable interest in pharmaceutical laboratories for controlling the chiral purity of drugs. This paper describes a simple and fast method for resolution of propranolol enantiomers by affinity capillary electrophoresis (ACE) using human serum albumin (HSA) as chiral selector. The effect of several experimental variables such as HSA concentration, temperature, chiral selector plug length and addition of organic modifiers, on the separation is evaluated. Complete enantioresolution of R- and S-propranolol was achieved in less than 5 min when the capillary was completely filled with 100 μM HSA solution and the electrophoresis was carried out with 67 mM phosphate buffer (pH 7.4) at 20 kV and 35 °C. Peaks were assigned to each propranolol enantiomer according to their relative affinities to HSA. The proposed method was applied to the analysis of pharmaceutical preparations containing propranolol. Resolution, accuracy, reproducibility, cost and sample throughput of the proposed method make it suitable for quality control of the enantiomeric composition of propranolol in pharmaceuticals.  相似文献   

19.
A chiral separation method for glycidol enantiomers determination by normal-phase high-performance liquid chromatography coupled to atmospheric pressure chemical ionization mass spectrometry was developed. Two chiral stationary phases, amylose tris-(3,5-dimethylphenylcarbamate) (Chiralpak AD-H) and (S)-indoline-2-carboxylic acid and (R)-1-(α-naphthyl) ethylamine (SUMICHIRAL OA-4900) have been investigated. The effects of the mobile phase composition, elution program and column temperature were also studied. Under the best conditions: Chiralpak AD-H column, mobile phase composition n-hexane:ethanol (70:30, v/v), flow rate of 0.8 mL/min and 40 °C column temperature, a good resolution (Rs = 1.6) for both enantiomers has been achieved with an analysis time of 16 min. The method was found to be linear in the range from 100 to 500 ppm for both glycidol enantiomers with a good determination coefficient (r2 higher than 0.99) and good precision. Limits of detection of 31 and 50 ppm for (R)-(+)-glycidol and (S)-(−)-glycidol, respectively, were obtained. The method was applied to the determination of the enantiomeric excess and yield obtained in a asymmetric epoxidation process of allyl alcohol with a chiral titanium-tartrate complex as catalyst.  相似文献   

20.
A simple and rapid HPLC method has been developed using a polysaccharide chiral stationary phase (Chiralpak AD-H) for the resolution of glycidyl tosylate enantiomers. These compounds were obtained by asymmetric epoxidation of allyl alcohol with chiral titanium-tartrate complexes as catalyst after in situ derivatization of the intermediate glycidols. Separations were achieved using two types of mobile phase: a normal-phase (n-hexane), and a polar-phase (methanol or acetonitrile). The influence of the type and concentration of organic modifier in the mobile phase (ethanol or 2-propanol), the flow rate and the column temperature was investigated. In normal-phase mode, the optimized conditions were: n-hexane/ethanol 70/30 (v/v) at a flow rate of 1.2 mL min−1 and 40 °C. In polar-phase mode, the optimized conditions were: methanol at a flow rate of 0.8 mL min−1 and 20 °C. In both cases, analysis time was ≤11 min and the chiral resolution was ≥2. Nevertheless, due to the better Rs obtained in normal-phase mode, only this method was validated to avoid peaks overlapping in real samples. This method was found to be linear in the 5-300 μg mL−1 range (R2 > 0.999) with an LOD of 1.5 μg mL−1 for both glycidyl tosylate enantiomers. Repeatability and intermediate precision at three different concentrations levels were below 0.5 and 7.2% R.S.D. for retention time and area, respectively. This method was applied successfully for the determination of glycidyl tosylate enantiomers after in situ derivatization of glycidols obtained in allylic alcohol asymmetric epoxidation processes with chiral titanium-tartrate complexes as catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号