首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 821 毫秒
1.
The aqueous mixed system sodium dehydrocholate (NaDHC)–sodium oleate (NaOL) was studied by several methods to determine the influence of the hydrophobic structure of both surfactants in the mixed micellization and the formation of the mixed monolayer adsorbed at the air–water interface. The molecular area at the critical micelle concentration in pure surfactant solutions suggests that the adsorbed oleate chain was folded to allow the double bond in the middle of the molecule to remain in contact with water, and that the NaDHC molecule was situated with its plane laying parallel to the water surface, allowing the three carbonyl groups in the hydrocarbon backbone to form hydrogen bonds with water. The interaction was repulsive at the surface, and in the mixed monolayer some molecules must move away the less hydrophilic groups from water (double bond of NaOL, carbonyl groups of NaDHC). The interaction in mixed micelles was strongly attractive, showing a preferential composition roughly equimolar. The hydrolysis in mixed micelles was augmented in comparison with pure surfactants systems, which could be explained by assuming the existence of a more hydrophobic mixed micelle core. The mixed micelle degree of ionization was below that of the pure micelles, thus indicating a high surface charge density.  相似文献   

2.
Sodium oleate (NaOL, C18H33O2Na)–sodium linoleate (NaLin, C18H31O2Na) mixtures were studied in the micellar and in the air/water interface states at 298.15 K. Three aggregation steps were found: a premicellar aggregation, the critical micelle concentration (CMC), and a structural change of micelles. Micelles, both at the CMC and at the structural change concentration, are richer in oleate than the overall mixture composition. Micelles are strongly non-ideal and the interaction is repulsive. The non-ideal behavior and the dependence of the micelle ionization degree with micelle composition are explained on the basis of the interaction of the π electrons of the surfactants’ chains with water at the hydrocarbon/water micellar interface. The air/solution adsorbed monolayer is also non-ideal, but the interaction is attractive and there is a preferential composition with a mole fraction of sodium oleate of about 0.7. The surface pseudophase behaves as if oleate were the solvent and linoleate a strongly soluble solute. This behavior and the dependence of the average area per adsorbed molecule were explained on the basis of the interaction of the double bonds with water. At the air/solution interface, the linoleate molecule area was similar to that of a heterogemini surfactant having a spacer with seven carbon atoms.  相似文献   

3.
Two isothermal sections of the isobaric ternary system H2O–Na2SO4–C5H10NH were determined by isoplethic thermal analysis at 293 and 323 K. The compositions of the aqueous and organic invariant liquids, respectively L1 and L2, as well as that of the critical point, were characterized for each isotherm. The temperature of the invariant reaction was obtained by controlled flow thermal analysis and the temperature of the demixing ending, by interpolation of the monovariant lines. All these informations allowed us to establish the isobaric polythermal diagram of the H2O–Na2SO4–C5H10NH system, for the temperature range 293–323 K, as well as a qualitative representation of the monovariant curves. This system is then characterized by a wide miscibility gap, three crystallization domains, and four-three-phase invariant domains. The relevant exploitation of this diagram so permits us to deduce the demixing temperature leading to the optimal transfer of the organic compounds in the light phase and also the composition of the organic phase recovered after this first step of extraction.  相似文献   

4.
5.
The results of DSC studies of NaBH4–KBF4 mixtures are presented. It is shown by chemical analysis, XRD analysis, IR spectroscopy, and 11B and 9F MAS NMR that the decomposition of the mixtures starts at ~563 K to yield polyhedral borohydride compounds (predominantly B12H122-) in the solid residue. This temperature is much lower than the decomposition temperature of pure NaBH4 (749 K). The mechanism of formation of the B12H122- anion has been proposed and confirmed. According to this mechanism, boron atoms from KBF4 are involved in the formation of this anion.  相似文献   

6.
Single and mixed micelle formation by sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (SDBS) and their mixtures in pure water and in the presence of water-soluble polymers such as Synperonic 85 (triblock polymer, TBP), hydroxypropylcellulose (HPC), and carboxymethylcellulose sodium salt (CMC) were studied with the help of conductivity, pyrene fluorescence, cyclic voltammetry, and viscosity measurements. Conductivity measurements showed a single aggregation process for pure surfactants and their mixtures both in pure water as well as in the presence of water-soluble polymers. Triple breaks corresponding to two aggregation processes for SDS, SDBS, and their mixture in the presence of TBP were observed from fluorescence measurements. The first one demonstrated the critical aggregation process due to the adsorption of surfactant monomers on TBP macromolecule. The second one was attributed to the participation of surfactant–polymer aggregates formed at the first one, in the micelle formation process. The aggregation number ( N agg) of single and mixed micelles and diffusion coefficient ( D) of electroactive probe were computed from the fluorescence and cyclic voltammetry measurements, respectively. Both parameters, along with the viscosity results, indicated stronger SDS–polymer interactions in comparison to SDBS–polymer interactions. Mixed surfactant–polymer interactions showed compensating effects of both pure surfactants. The nature of mixed micelles was found to be ideal in all cases, as evaluated by applying the regular solution and Motomura's approximations.  相似文献   

7.
The susceptibility of heart healthy ω-3 fatty acids to lipid oxidation has hindered its incorporation into healthful foods and beverages. In this study, plant-based flaxseed oil rich in ω-3 fatty acids were dispersed into primary, secondary and tertiary emulsion system. A primary emulsion containing sodium caseinate-stabilized cationic droplets was prepared by homogenizing flaxseed oil as oil phase and sodium caseinate solution as the aqueous phase in an ultrasonicator. A secondary emulsion comprising of sodium caseinate–sodium alginate anionic droplets were produced by diluting appropriate primary emulsion with alginate solution. Further, a tertiary emulsion composed of sodium caseinate–sodium alginate–chitosan-coated cationic droplets was produced by diluting secondary emulsion with chitosan solution. The resistance of primary, secondary and tertiary emulsions with the same lipid concentration to destabilization by thermal treatment (30–90 °C for 30 min), sodium chloride addition (≤70 mM NaCl) and oxidative degradation (hydroperoxide concentration and TBARS) was determined. The results showed that secondary emulsions could resist variation in environmental stresses of salt and heat as well as protect the oil phase from decomposition better than primary and tertiary emulsions. Interfacial engineering could be used to design emulsion system with desirable characteristics.  相似文献   

8.
Three samples from tellurophosphate glasses with the compositions (85 − x) TeO2·15P2O5·xNa2O with x = 15, 20 and 25 mol% were prepared by a melting technique. The crystallization behavior and the kinetics of the glasses were investigated using differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. The mean value of the activation energy (Eg) for structural relaxation decreases from 352 to 317 ± 5 kJ mol1. Otherwise the activation energy for crystallization (Ec) was calculated to increase from 164, 195 and 201 ± 5 kJ mol−1 with increasing Na2O concentration. The values of the Avrami exponents for the exothermic peaks are closed to 1.0 and 2.0. The crystalline phase Te2P2O9 was detected and it grow as sheets disperse in the matrix.  相似文献   

9.
Coordination polymers [Na(Hidc)(H2idc)(H2O)2] (1) and [Na(Hidc)(H2O)] (2) (H2idc?=?imidazole-4,5-dicarboxylic acid) have been synthesized hydrothermally and analyzed by single-crystal X-ray diffraction analysis, TGA, and IR. Compound 1 displays a 1-D coordination network and 2 exhibits a layered coordination structure. Both compounds form 3-D frameworks through hydrogen bonds.  相似文献   

10.
《Fluid Phase Equilibria》1999,157(2):229-255
Phase equilibria in the NaCl–Na2SO4–H2O system were investigated at 200 and 250 bar for total salt concentrations ranging from 5 to 20 wt.% total salt over temperatures ranging from 320 to 400°C. In addition to providing data for this ternary system, the experiments also added information on the phase behavior of the two binary systems: NaCl–H2O and Na2SO4–H2O. For salt mixture compositions which were rich in sodium sulfate, a solid phase was observed to nucleate from the homogeneous liquid phase. Salt mixture compositions which had a high fraction of sodium chloride exhibited a vapor separation from a homogeneous liquid phase. By fitting curves to the solid–liquid and vapor–liquid separation temperatures, the temperature and composition of a constrained invariant point where liquid, solid salt and vapor are in equilibrium were estimated. These estimates were performed at discrete compositions of 5, 10, 15 and 20 wt.% total salt at pressures of 200 and 250 bar. The temperature and composition of the invariant point increased with increasing pressure following a simple thermodynamic model for boiling point elevation in a nearly ideal solution.  相似文献   

11.
Sodium and lithium cobaltates are important materials for thermoelectric and battery applications due to their large thermoelectric power and ability to (de-) intercalate the alkali metal. For these applications, phase pure materials with controlled microstructure are required. We report on the sol?Cgel synthesis of sodium- and lithium-based materials by using acetate precursors. The produced Na2/3CoO2, Li(Ni1/3Mn1/3Co1/3)O2, and Li(Ni1/2Co1/2)O2 powders are phase pure with grain sizes below 1???m. X-ray diffraction and energy-dispersive spectral analyses show that the cation stoichiometry is preserved in the lithium-based compounds. Despite the low temperatures, the sodium content is reduced by 1/3 as compared to the initial value. Chemical phases of the investigated powders are formed in the sol?Cgel route at temperatures typically 100?C200?K lower than those used in the conventional solid-state synthesis of these materials. The suggested sol?Cgel synthesis is a low temperature process suited for production of phase pure and homogeneous materials with volatile cations.  相似文献   

12.
13.
Aggregation of sodium lauroylsarcosinate (SLS) in aqueous solutions of methanol, ethanol, propanol and ethylene glycol at 288–313 K has been determined from conductivity measurement in the range 0–20% v/v of additives. The precise values of the critical micelle concentration (CMC) and the degree of counter-ion dissociation of micelles were obtained at each temperature by fitting the specific conductivity-surfactant concentration curve to the integrated form of the Boltzmann-sigmoid equation. The CMC was found to increase with increase in additive concentrations in the case of methanol and ethylene glycol, while it decreases with increase in ethanol and propanol concentration. The equilibrium model of micelle formation was applied to obtain the thermodynamic parameters of micellisation. The Gibbs free energies were observed to vary only slightly with temperature and additive concentrations. Enthalpy–entropy compensation was observed for all the systems with a constant compensation temperature of ≈300 K and negative compensation enthalpy.  相似文献   

14.
Protein can greatly enhance the fluorescence of curcumin (CU) in the presence of sodium dodecyl benzene sulfonate (SDBS). Experiments indicate that under the optimum conditions, the enhanced intensity of fluorescence is proportional to the concentration of proteins in the range of 0.0050–20.0 μg mL−1 for bovine serum albumin (BSA), 0.080–20.0 μg mL−1 for human serum albumin (HSA), and 0.040–28.0 μg mL−1 for egg albumin (EA). Their detection limits (S/N=3) are 1.4 ng mL−1, 20 ng mL−1, and 16 ng mL−1, respectively. The method has been satisfactorily used for the determination of proteins in actual samples. In comparison with most of fluorimetric methods, this method is quick and simple, has high sensitivity and good stability. The interaction mechanism is also studied.  相似文献   

15.
A mixture of sodium dehydrocholate (NaDHC) and hexadecyltrimethylammonium bromide (HDTAB) was employed as a template to produce mesoporous silica. The obtained material shows the same structure as common MCM-41 sieves, but the pore radius distribution is narrower than that of the material produced with the same concentration of pure HDTAB. The average pore radius is also larger than that of the pure HDTAB-templated material.  相似文献   

16.
A new lanthanide-sensitized luminescence system: europium–sparfloxacin–1,10-phenanthroline–sodium dodecyl sulfate has been discovered. The spectrofluorimetric properties of the system were studied. The effect of experimental conditions on the fluorescence intensity was defined. Under the optimum conditions, the fluorescence intensity of the system is a linear function of the concentration of europium in the range 5.0×10–9–1.0×10–6 mol L–1 and the detection limit is 1.0×10–10 mol L–1. The system was used for the determination of trace amounts of europium in rare earth samples with satisfactory results.  相似文献   

17.
Varying amounts of Na and K doped lanthanum–titanium oxides were synthesized by gel entrapment technique. These ceramics were characterized by X-ray diffraction. Microstructural investigations revealed grain growth in the doped material compared to undoped sample. Dielectric relaxations of these compounds were investigated in the temperature range 250–900 °C. A high degree of dispersion of the permittivity of un-doped lanthanum–titanium oxide and K and Na doped lanthanum–titanium oxide was observed in the frequency range <100 kHz which was attributed to oxygen vacancies. An increase in the permittivity values were observed with 1 % Na and K doped samples. The permittivity values further deteriorated with the dopant concentration. Using the Cole–Cole model, an analysis of the dielectric loss with frequency was performed, assuming a distribution of relaxation time. The dielectric loss was found to decrease by doping K in lanthanum–titanium oxide matrix. The dc conductivity studies showed that a temperature dependent hopping type mechanism is responsible for electrical conduction in the system.  相似文献   

18.
19.
Interpolyelectrolyte complex (IPEC) dispersions were prepared from chitosan and poly(sodium acrylate), NaPMA, by mixing their solutions, at different carboxyl-to-aminium molar ratios, rCA. Gyration radius was determined by small angle x-ray scattering (SAXS) and showed that, as rCA was increased, IPEC dimensions decreased and reached a minimum at rCA?=?0.75, which was considered the ratio at which IPEC cluster dimensions were minimum, following collapse, phase segregation, nucleation, and growth of larger particles. Pair distance distributions, P(r), became narrower up to rCA?=?0.75, increasing its width from this point. Relaxation-related parameters from dynamic light scattering (DLS) intensity correlation functions (ICFs) identified three main relaxation processes. The fast process, related to free polyelectrolyte molecules random motion disappeared as rCA, was increased. The other two relaxation processes also were a function of rCA and presented marked changes at rCA?=?0.75. At the same value of rCA, the energy of activation for the average relaxation rate showed the occurrence of a clear change in the nature of IPEC-related interactions. As hydrodynamic diameter, determined by DLS, was much larger than the gyration radius determined by SAXS, IPEC particles could be described as being composed by a core, rich in segregated, insoluble material, enveloped by IPEC soluble clusters, possibly in the form of water-rich gels.  相似文献   

20.
Alginate membranes for the pervaporation dehydration of ethanol–water and isopropanol–water mixtures were prepared and tested. The sodium alginate membrane was water soluble and mechanically weak but it showed promising performance for the pervaporation dehydration. To control the water solubility the sodium alginate membrane was crosslinked ionically using various divalent and trivalent ions. Among them the alginate membrane crosslinked with Ca2+ ion showed the highest pervaporation performance in terms of the flux and separation factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号