首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article reports a new procedure for the direct determination of faecal sterols coprostanol and cholesterol in wastewater samples as tracers of human sewage contamination. The method combines in-tube solid-phase microextraction (IT-SPME) for analyte enrichment and capillary liquid chromatography (LC) for separation with diode array detection for identification and quantification. A titania-based polymeric capillary column and a conventional octadecyl silica (ODS) capillary column were evaluated and compared for their ability to separate the analytes. The titania-based column allowed the separation of the analytes in much shorter chromatographic times and with better chromatographic profiles, which in turn resulted in better detectability. In addition, IT-SPME allowed the direct injection into the chromatographic system of sample volumes as large as 200 μL, thus making unnecessary off-line clean-up and concentration steps. In such a way, the tested compounds could be directly analysed in less than 10 min, the limits of detection (LODs) being 10 and 1.2 μg/L for coprostanol and cholesterol, respectively. The reliability of the proposed method was tested by processing several wastewater samples.  相似文献   

2.
A new device for carbonyl compounds based on coupling on-line and miniaturizing both, sample pretreatment and chromatographic separation, is reported. Two capillary columns, a GC capillary column (95% methyl-5% phenyl substituted backbone, 70 cm × 0.32 mm i.d., 3 μm film thickness) in the injection valve for in-tube solid-phase microextraction (IT-SPME) and a Zorbax SB C18 (150 mm × 0.5 mm i.d., 5 μm particle diameter) LC capillary column were employed. Different combinations of IT-SPME and derivatization using 2,4-dinitrophenylhydrazine (DNPH) were examined for mixtures containing 15 carbonyl compounds (aliphatic, aromatic and unsaturated aldehydes and ketones). A screening analysis of aqueous extracts of atmospheric particulate PM(10) was carried out. Moreover, the possibility of coupling IT-SPME and conventional liquid chromatography is also tested. Derivatization solution and IT-SPME coupled to capillary liquid chromatography provided the best results for achieving the highest sensitivity for carbonyl compounds in atmospheric particulate analysis. Detection limits (LODs) using a photodiode array detector (DAD) were ranged from 30 to 198 ng L(-1), improving markedly those LODs reported by conventional SPME-LC-DAD.  相似文献   

3.
The performance of a monolithic C(18) column (150 mm×0.2 mm i.d.) for multiresidue organic pollutants analysis by in-tube solid-phase microextraction (IT-SPME)-capillary liquid chromatography has been studied, and the results have been compared with those obtained using a particulate C(18) column (150 mm×0.5 mm i.d., 5 μm). Chromatographic separation has been carried out under isocratic elution conditions, and for detection and identification of the analytes a UV-diode array detector has been employed. Several compounds of different chemical structure and hydrophobicity have been used as model compounds: simazine, atrazine and terbutylazine (triazines), chlorfenvinphos and chlorpyrifos (organophosphorous), diuron and isoproturon (phenylureas), trifluralin (dinitroaniline) and di(2-ethylhexyl)phthalate. The results obtained revealed that the monolithic column was clearly advantageous in the context of multiresidue organic pollutants analysis for a number of reasons: (i) the selectivity was considerably improved, which is of particular interest for the most polar compounds triazines and phenyl ureas that could not be resolved in the particulate column, (ii) the sensitivity was enhanced, and (iii) the time required for the chromatographic separation was substantially shortened. In this study it is also proved that the mobile-phase flow rates used for separation in the capillary monolithic column are compatible with the in-valve IT-SPME methodology using extractive capillaries of dimensions similar to those used in conventional scale liquid chromatography (LC). On the basis of these results a new method is presented for the assessment of pollutants in waters, which permits the characterization of whole samples (4 mL) in less than 30 min, with limits of detection in the range of 5-50 ng/L.  相似文献   

4.
We report a new device for the estimation of the content of chlorophyll a pigment in water samples as an indicator of water quality. The extraction of the pigment from water was also optimized. 10 mL of water was filtered through a nylon filter (45 μm pore size and 13 mm of diameter), after the chlorophylls were dissolved by immersing the filter in 1 mL of a low non-hazardous solvent as ethanol. An in-valve in-tube SPME device coupled to capillary liquid chromatography with diode array detection was designed. A capillary column of 70 cm in length (0.32 mm i.d. coated with 5% diphenyl-95% polydimethylsiloxane, 3 μm coating thickness) was used as the loop of the injection valve for preconcentration and a Zorbax SB C18 (SiO2-based) 150 mm × 0.5 mm i.d., 5 μm column (Agilent) was used as analytical column. The achieved detection limit was 0.05 μg L−1 and the working range of concentrations was 0.1-1 μg L−1. % RSD values between 2 and 11 were obtained. Chlorophyll a in several water matrices was determined with good results in presence of other pigments such as chlorophyll b, pheophytin a and pheophytin b.  相似文献   

5.
A coupled capillary column system was developed for the qualitative and quantitative determination of melamine with isotope internal standard in dairy products by gas chromatography/mass spectrometry (GC/MS) without derivatization. A 30 m of DB-5ms ((5%-phenyl)-methylpolysiloxane, 0.25 mm i.d., 0.25 μm df) coupled with a 1.5 m of Innowax (polyethylene glycol, 0.32 mm i.d., 0.25 μm df) by a quartz capillary column connector was introduced as separation column. Three advantages were discussed for the coupled system. The sample was fortified with a ring-labeled 13C315N3-melamine as an isotope internal standard and extracted by 1% of trichloroacetic acid aqueous solution. 2.2% of lead acetate solution was then added to deposit protein in the sample matrix. After purification by cation exchange cartridge, the sample solution was directly injected and detected by GC/MS. A six-point calibration curve ranging from 0.05 to 2 mg kg−1 of melamine in sample was used to establish instrument response. The recovery was 93.9-102% with relative standard deviation from 3.1 to 8.7% when isotope internal standard used. The calculated method detection limit was 0.01 mg kg−1.  相似文献   

6.
This article reports on the effective extraction of triazines from environmental water samples using magnetism-enhanced monolith-based in-tube solid phase microextraction (ME-MB/IT-SPME). Firstly, monolithic poly (octyl methacrylate-co-ethyleneglycol dimethacrylate) capillary column doped with magnetic nanoparticles was synthesized inside a fused silica. After that, the monolithic capillary column was placed inside a magnetic coil that allowed the exertion of a variable magnetic field during adsorption and desorption steps. The effects of intensity of magnetic field, adsorption and desorption flow rate, volume of sample and desorption solvent, pH value and ionic strength in sample matrix on the performance of ME-MB/IT-SPME for triazines were investigated in details. Under the optimized conditions, the developed ME-MB/IT-SPME showed satisfactory quantitative extraction efficiencies of the target analytes between 64.8% and 99.7%. At the same time, the ME-MB/IT-SPME was combined with high-performance liquid chromatography with diode array detection to detect six triazines in water samples. The limits of detection (S/N = 3) and limits of quantification (S/N = 10) were in the ranges of 0.074–0.23 μg/L and 0.24–0.68 μg/L, respectively. The precision of the proposed method was evaluated in terms of intra- and inter-assay variability calculated as relative standard deviation, and it was found that the values were all below 10%. Finally, the developed method was successfully applied for environmental water samples such as farmland, lake and river water with spiked recoveries in the range of 70.7–119%.  相似文献   

7.
A wall-free detection method based on liquid junction in a capillary gap was proposed for laser-induced fluorescence (LIF) of capillary electrophoresis (CE). The capillary gap of the wall-free cell was fabricated by etching a 10-mm × 50-μm I.D. fused-silica capillary to obtain a polyimide coating sleeve, decoating about 6 mm at one end of both 50 μm I.D. separation and liquid junction capillary, inserting the treated capillary ends into the coating sleeve oppositely, fixing the capillaries with a gap distance of 140 μm by epoxy glue and removing the coating sleeve by burning. The theoretical model, experimental results and wall-free cell images indicated that the gap distance and applied voltage were main influence factors on the wall-free detection. Since the wall-free cell increased the absorption light path and avoided the stray light from the capillary wall, it improved the ratio of signal to noise and limit of detection (LOD) of CE-LIF. Three flavin compounds of riboflavin (RF), flavin mononucleotide sodium (FMN) and flavin adenine dinucleotide disodium (FAD) were used to evaluate the wall-free detection method. Compared with on-column cell, the LODs of the wall-free cell were improved 15-, 6- and 9-fold for RF, FMN and FAD, respectively. The linear calibration concentrations of the flavins ranged from 0.005 to 5.0 μmol/L. The column efficiency was in the range from 1.0 × 105 to 2.5 × 105 plates. The wall-free detection of CE-LIF was applied to the analysis of the flavins in spinach and lettuce leaves.  相似文献   

8.
采用顶空毛细管柱GC–MS法测定饮用水中卤代烃、苯系物、氯苯等15种挥发性有机物。色谱柱为DB–624石英毛细管柱(60 m×0.25 mm,1.8μm),程序升温,直接进样顶空毛细管柱气质联用法同时测定饮用水中15种挥发性有机物。该方法具有良好的线性,线性相关系数均大于0.996。方法的检出限为0.10~0.22μg/L。15种挥发性有机物的平均回收率在94%~103%之间,测定结果的相对标准差为2.9%~6.7%(n=7)。该方法简便、快速,检测结果均能满足GB 5749–2006检测要求。  相似文献   

9.
A method for the simultaneous determination of four fluoroquinolones of veterinary use (ciprofloxacin, danofloxacin, enrofloxacin and sarafloxacin) in two complex matrixes, such as bovine raw milk and pig kidney, has been established and validated. The method is based on the use of capillary electrophoresis (CE) coupled with a very sensitive detection mode, such as laser induced fluorescence (LIF) detection, due to the fact the all the compounds selected show native fluorescence. In order to achieve high selectivity in the sample treatment procedure, a commercially available molecularly imprinted polymer has been used for the solid phase extraction of the analytes. Once the retention and elution processes were optimized, the final extract was analyzed by CE-LIF using a 325 nm He–Cd laser. Optimum separation was obtained in a 70 cm × 75 μm capillary using a 125 mM phosphoric acid solution at pH 2.8 with 36% methanol as background electrolyte. The method provided very low detection limits, ranging from 0.17 to 0.98 μg/kg for milk and 1.10 to 10.5 μg/kg for kidney, with acceptable precision and satisfactory recoveries.  相似文献   

10.
Valve-based comprehensive two-dimensional gas chromatography (GC × GC) is one of the most compact, robust, and inexpensive GC × GC instrument designs. The major drawback of a valve-based modulation configuration lies in diminished detection sensitivity. This loss in sensitivity is because under typical operating conditions the fraction of the first column (i.e., column 1) effluent transferred to the second column (i.e., column 2) is likely to be ∼5-10%. To address this loss in sensitivity, we report the development of a unique total-transfer (i.e., 100%) valve-based GC × GC, without adding complexity to the instrumentation. The new instrument design relies upon simply blocking one of the appropriate ports of the high-speed six-port diaphragm valve that is used as the modulator between columns 1 and 2. The modulation period and difference in head pressure between columns 1 and 2 are found to be the two primary variables that are controlled to provide good detection sensitivity and 100% mass transfer from column 1 to column 2. The detection sensitivity is better with a longer the modulation period. A limit of detection of 0.03 ng/μl was obtained for octane. This sensitive GC × GC configuration is also shown to provide acceptable separation peak capacity, with good separations achieved for real complex samples: gasoline and Eucalyptus oil, where compounds were spread out over much of the two-dimensional separation space. In principle, this total-transfer, valve-based GC × GC is more portable and less expensive than currently available GC × GC instrumentation.  相似文献   

11.
Mikus P  Valásková I  Havránek E 《Talanta》2005,65(4):1031-1037
A capillary electrophoresis method has been developed for the separation and determination of terbinafine (TER) in various pharmaceutically relevant matrices. Capillary zone electrophoresis (CZE) separation and UV absorbance photometric detection were carried out in a 160 mm capillary tube with a 300 μm i.d., hydrodynamically (membrane) closed. The influences of pH, carrier cation and counterion on migration parameters of TER were studied and the following conditions were selected: a 20 mmol l−1 glycine running buffer adjusted to pH 2.7 with acetic acid, 0.2% (w/v) methylhydroxyethylcellulose (m-HEC) as an electro-osmotic flow (EOF) suppressor, a 250 μA driving current, and 20 °C. The optimized separation conditions were convenient for the determination of TER in commercial tablets and spray and in dialyzates. Here, the dialysis was used to investigate in vitro permeation of TER through the skin from the gel. The samples of dialyzates were examined with and without simple extraction procedure and the results were compared. A permeation profile of the drug present in the gel of given composition was obtained analyzing pretreated samples. The proposed electrophoretic method was successfully validated. It was suitable for the simple, sensitive, rapid and highly reproducible assay of TER. CZE analysis was completed within 5.5 min. The detection limit of TER was 1.73 μmol l−1 at a 224 nm detection wavelength. The intra- and inter-laboratory precisions over the concentration range 6.0-60.0 μmol l−1 were between 0.32-0.69% and 1.04-1.44% including R.S.D. of migration times and peak areas, respectively. The mean absolute recoveries of drugs from samples were found to be 98.34 (tablets) and 99.47% (spray). It is suggested that there are potentialities to determine TER present in unpretreated complex samples, as CZE in a hydrodynamically closed separation system may be easily on-line combinable with purification and preconcentration CE modes (e.g., isotachophoresis, ITP).  相似文献   

12.
Belin GK  Erim FB  Gülaçar FO 《Talanta》2006,69(3):596-600
The separation of different ring numbered polyaromatic hydrocarbons (PAHs) was accomplished by using cetyltrimethylammonium bromide (CTAB) in capillary electrokinetic chromatography. In order to increase the solubilities and selectivities of PAHs, acetonitrile (ACN) was used as an organic modifier. Under the optimised conditions, 11 aromatic compounds were separated within 14.5 min in a running electrolyte containing 10 mM phosphate, 30 mM CTAB, and 40% ACN at pH 6.0. The effects of CTAB and ACN concentrations, voltage and pH on the resolution were investigated. Reproducibilities of migration times range between 0.55 and 1.27 R.S.D.% and peak areas between 1.02 and 7.23 R.S.D.%. Limit of detections (LODs) range between 0.09 and 2.24 μg ml−1. This new and fast separation method of PAHs was applied to cooked oil sample.  相似文献   

13.
A methodology based on the coupling of a headspace autosampler with a GC and a MS detector operating in SIM mode has been developed for the determination of volatile organic compounds (THMs and BTEX) in soils. The GC device used is equipped with a programmable temperature vaporizer (PTV) packed with Tenax-TA® to introduce the samples (the injection mode used was solvent vent), and a modular accelerated column heater (MACH™) to control column temperature. The proposed measurement procedure reduces the sample pretreatment step to a minimum. Combined use of solvent vent injection mode and mass spectrometry detection allows a highly sensitive method to be proposed, with limits of detection of the order of ng/kg for all the target compounds. Furthermore, the capillary column used allows rapid separations of compounds in less than 4.60 min, affording a very short total analysis cycle time of 9 min.  相似文献   

14.
We report the development of a microfabricated gas chromatography system suitable for the separation of volatile organic compounds (VOCs) and compatible with use as a portable measurement device. Hydrofluoric acid etching of 95 × 95 mm Schott B270 wafers has been used to give symmetrical hemi-spherical channels within a glass substrate. Two matching glass plates were subsequently cold bonded with the channels aligned; the flatness of the glass surfaces resulted in strong bonding through van der Waals forces. The device comprised gas fluidic interconnections, injection zone and 7.5 and 1.4 m long, 320 μm internal diameter capillaries. Optical microscopy confirmed the capillaries to have fully circular channel profiles. Direct column heating and cooling could be achieved using a combination of resistive heaters and Peltier devices. The low thermal conductivity of glass allowed for multiple uniform temperature zones to be achieved within a single glass chip. Temperature control over the range 10–200 °C was achieved with peak power demand of approximately 25 W. The 7.5 m capillary column was static coated with a 2 μm film of non-polar dimethylpolysiloxane stationary phase. A standard FID and a modified lightweight 100 mW photoionization detector (PID) were coupled to the column and performance tested with gas mixtures of monoaromatic and monoterpene species at the parts per million concentration level. The low power GC-PID device showed good performance for a small set of VOCs and sub ng detection sensitivity to monoaromatics.  相似文献   

15.
A silica nanoparticle (NP)-deposited capillary fabricated by liquid-phase deposition (LPD) and modified with octadecyl groups was introduced for in-tube solid-phase microextraction coupled to high-performance liquid chromatography with UV detection (in-tube SPME–HPLC). The resultant capillary (60 cm × 50 μm I.D.) was demonstrated to be of higher extraction capacity by comparing with an octadecyl-grafted bare capillary and an octadecyl-grafted silica-coated capillary that was prepared by sol–gel chemistry. Two groups of compounds, endocrine disruptors and polycyclic aromatic hydrocarbons, were used as model analytes to further evaluate extraction capacity of the silica NP-deposited capillary, and its reproducibility and stability was also investigated. The extraction time profiles were monitored for all the chemicals, and their limits of detection were calculated to be in the range of 0.42–0.78 and 0.034–0.19 ng/mL with RSD values of peak area less than 4.6%.  相似文献   

16.
Amr L. Saber 《Talanta》2009,78(1):295-299
An instrumental setup including on-line solid phased extraction coupled to capillary liquid chromatography-electrospray ionization-mass spectrometry (SPE-capLC-ESI-MS) has been constructed to improve the sensitivity for quantification of fluoxetine hydrochloride in human plasma. Prior to injection, 0.5 mL of plasma spiked with metronidazole (internal standard) was mixed with ammonium formate buffer for effective chloroform liquid-liquid extraction. The method was validated in the range 5-60 ng mL−1 fluoxetine, yielding a correlation coefficient of 0.999 (r2). The within-assay and between-assay precisions were between (8.5 and 11%) and (6.6 and 7.5%), respectively. The method was used to determine the amount of fluoxetine in a healthy male 14 h after an intake of one capsule of the antidepressant and anorectic Flutin®, which contains 20 mg fluoxetine per each capsule. Fluoxetine was detected, and the concentration was calculated to 9.0 ng mL−1 plasma. In the preliminary experiments, conventional LC-UV instrumentation was employed. However, it was found that employing a capillary column with an inner diameter of (0.3 mm I.D. × 50 mm, Zorbax C18) increased the sensitivity by a factor of ∼100, when injecting the same mass of analyte. Incorporating an easily automated C18 reversed phase column switching system with SPE (1.0 mm I.D. × 5.0 mm, 5 μm) made it possible to inject up to 100 μL of solution, and the total analysis time was 5.5 min.  相似文献   

17.
A sensitive and reliable method using capillary HPLC with UV-diode array detection (DAD) has been developed and validated for the trace determination of residues of 10 β-lactam antibiotics of human and veterinary use, in milk, chicken meat and environmental water samples. The analytes included ampicillin, amoxicillin, penicillin V, penicillin G, cloxacillin, oxacillin, dicloxacillin, nafcillin, piperacillin and clavulanic acid. Legal levels are regulated by the EU Council regulation 2377/90 in animal edible tissues for these compounds. For food analysis, a solid-phase extraction (SPE) procedure consisting in a tandem of Oasis HLB and Alumina N cartridges was applied for off-line preconcentration and cleanup. For water analysis, the first step was only necessary. The limits of detection for the studied compounds were between 0.04–0.06 μg l−1 for water samples and 0.80–1.40 μg l−1 (or μg kg−1) in the case of foods derived from animals. Average recoveries for fortified samples at different concentration levels ranged between 82.9% and 98.2%, with relative standard deviations (RSDs) lower than 9%. The method showed the advantages of capillary HPLC for the detection of these widely applied antibiotics in different samples at very low concentration levels.  相似文献   

18.
Park HS  Ryu HR  Rhee CK 《Talanta》2006,70(3):481-484
A simultaneous separation of cationic, amphoteric and nonioinc nine surfactants (DMDS, DMDP, DMDM, DMDL, BZC, CDE, A/O, SUNC, IMD) has been performed by a reverse phase-HPLC method utilizing a single J'sphere ODS (250 mm × 4.6 mm, 4 μm) column and a methanol-water containing 0.2% TFA eluent system within 60 min. The observed precision in determination of concentration was less than 5% R.S.D., which revealed that ELSD was an effective tool to detect the various studied surfactants of low volatility without chromophore. In addition, the detection limits were in the concentration range of 3.5-10 μg/mL, and the calibration curves, i.e. the log-log plots, were linear in the working range of 5-4600 μg/mL with the slopes of 1.321-1.668. The application of the analytical procedure to three household products without pretreatment supported that the presented chromatographic method was simple to be practical for a routine analysis of commercial products.  相似文献   

19.
A simple, accurate, precise, rapid and sensitive stability-indicating capillary electrophoresis (CE) method was optimized and validated for the simultaneous determination of norfloxacin and its inactive decarboxylated degradant in pharmaceuticals. The univariant method was used to optimize electrophoretic factors including injection time, separation voltage and column temperature. Electrolyte concentration and pH were optimized using the factorial design and response surface methods. The optimum conditions obtained were: 10 mmol l− 1 phosphate at pH 2.5, hydrodynamic injection time of 8 s at pressure 0.5 p.s.i., separation voltage 25 kV and column temperature 25 °C. The separation was carried out into a fused-silica capillary column (31.2 cm length × 50 μm i.d.) with detection at 301 and 285 nm for the intact drug and the degradant, respectively using a diode array detector. For both analytes, the method enjoys wide dynamic range (1-50 μg ml− 1) with good detectability (limits of detection 0.11 μg ml− 1). In addition, acceptable accuracy (recovery > 95%); and good repeatability and intermediate precision (RSD < 3.5%) were obtained.  相似文献   

20.
This study examines the application of solid-phase microextraction coupled with high performance liquid chromatography combined with post-column photochemically induced fluorimetry derivatization and fluorescence detection (SPME-HPLC-PIF-FD) for the determination of four phenylurea herbicides (monolinuron, diuron, linuron and neburon) and propanil in groundwater. Direct immersion (DI) SPME was applied using a 60 μm polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber for the extraction of the pesticides from groundwater samples. An AQUASIL C18 column (150 mm × 4.6 mm i.d., 5 μm) was used for separation and determination in HPLC. The method was evaluated with respect to the limits of detection (LODs) and the limits of quantification (LOQs) according to IUPAC. The limits of detection varied between 0.019 μg L−1 and 0.034 μg L−1. Limits of quantification ranged between 0.051 μg L−1 and 0.088 μg L−1. These values meet the recommended limits for individual pesticides in groundwater (0.1 μg L−1) established by the EU. Recoveries ranged between 86% and 105% and relative standard deviation values between 2% and 8%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号