首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
2.
The purpose of this paper is to show how the diagrammatic expansion in fermion exchanges of scalar products of N-composite-boson (“coboson”) states can be obtained in a practical way. The hard algebra on which this expansion is based, will be given in an independent publication. Due to the composite nature of the particles, the scalar products of N-coboson states do not reduce to a set of Kronecker symbols, as for elementary bosons, but contain subtle exchange terms between two or more cobosons. These terms originate from Pauli exclusion between the fermionic components of the particles. While our many-body theory for composite bosons leads to write these scalar products as complicated sums of products of “Pauli scatterings” between two cobosons, they in fact correspond to fermion exchanges between any number P of quantum particles, with 2 ≤P≤N. These P-body exchanges are nicely represented by the so-called “Shiva diagrams”, which are topologically different from Feynman diagrams, due to the intrinsic many-body nature of the Pauli exclusion from which they originate. These Shiva diagrams in fact constitute the novel part of our composite-exciton many-body theory which was up to now missing to get its full diagrammatic representation. Using them, we can now “see” through diagrams the physics of any quantity in which enters N interacting excitons — or more generally N composite bosons —, with fermion exchanges included in an exact — and transparent — way.  相似文献   

3.
In this continuation of an earlier paper we develop further the theme of quantum logical specification and derive from it some apparently physically viable instantiations of potential quantum computing devices. Specifically, in the case of a one-parameter set of terms (or labels)—read as instants of time—we find, emerging quite naturally from the algebraic setup, the paradigm for a single qubit epitomized by the case of a two-state fermion interacting with an external single mode boson. This covers the cases: cavity QED, trapped ions, and, when the qubits are multiplexed appropriately, NMR based systems. (This case degenerates to one in which only bosons are relevant as in the case of pure bosonic harmonic oscillator models in the “dual rail” representation. Such models fly in the face of the logic itself, thus clearly revealing even at this level their well-known shortcomings as practical quantum computing devices. Here as elsewhere logical constraints apparently dominate physical ones.) In a final section we indicate briefly how this process exactly generalizes, in the case of a manifold of terms more general than the one-parameter case, to yield the notion of holonomic quantum computation. In the course of this investigation we find an interpretation of path integrals as limits of sequences of logical CUTS, thus establishing a link—though still tenuous—between ensembles of acts of quantum computation and Lagrangians.  相似文献   

4.
5.
6.
This paper offers a critique of the Bayesian interpretation of quantum mechanics with particular focus on a paper by Caves, Fuchs, and Schack containing a critique of the “objective preparations view” or OPV. It also aims to carry the discussion beyond the hardened positions of Bayesians and proponents of the OPV. Several claims made by Caves et al. are rebutted, including the claim that different pure states may legitimately be assigned to the same system at the same time, and the claim that the quantum nature of a preparation device cannot legitimately be ignored. Both Bayesians and proponents of the OPV regard the time dependence of a quantum state as the continuous dependence on time of an evolving state of some kind. This leads to a false dilemma: quantum states are either objective states of nature or subjective states of belief. In reality they are neither. The present paper views the aforesaid dependence as a dependence on the time of the measurement to whose possible outcomes the quantum state serves to assign probabilities. This makes it possible to recognize the full implications of the only testable feature of the theory, viz., the probabilities it assigns to measurement outcomes. Most important among these are the objective fuzziness of all relative positions and momenta and the consequent incomplete spatiotemporal differentiation of the physical world. The latter makes it possible to draw a clear distinction between the macroscopic and the microscopic. This in turn makes it possible to understand the special status of measurements in all standard formulations of the theory. Whereas Bayesians have written contemptuously about the “folly” of conjoining “objective” to “probability,” there are various reasons why quantum-mechanical probabilities can be considered objective, not least the fact that they are needed to quantify an objective fuzziness. But this cannot be appreciated without giving thought to the makeup of the world, which Bayesians refuse to do. Doing this on the basis of how quantum mechanics assigns probabilities, one finds that what constitutes the macroworld is a single Ultimate Reality, about which we know nothing, except that it manifests the macroworld or manifests itself as the macroworld. The so-called microworld is neither a world nor a part of any world but instead is instrumental in the manifestation of the macroworld. Quantum mechanics affords us a glimpse “behind” the manifested world, at stages in the process of manifestation, but it does not allow us to describe what lies “behind” the manifested world except in terms of the finished product—the manifested world, for without the manifested world there is nothing in whose terms we could describe its manifestation.  相似文献   

7.
As quantum information science approaches the goal of constructing quantum computers, understanding loss of information through decoherence becomes increasingly important. The information about a system that can be obtained from its environment can facilitate quantum control and error correction. Moreover, observers gain most of their information indirectly, by monitoring (primarily photon) environments of the “objects of interest.” Exactly how this information is inscribed in the environment is essential for the emergence of “the classical” from the quantum substrate. In this paper, we examine how many-qubit (or many-spin) environments can store information about a single system. The information lost to the environment can be stored redundantly, or it can be encoded in entangled modes of the environment. We go on to show that randomly chosen states of the environment almost always encode the information so that an observer must capture a majority of the environment to deduce the system’s state. Conversely, in the states produced by a typical decoherence process, information about a particular observable of the system is stored redundantly. This selective proliferation of “the fittest information” (known as Quantum Darwinism) plays a key role in choosing the preferred, effectively classical observables of macroscopic systems. The developing appreciation that the environment functions not just as a garbage dump, but as a communication channel, is extending our understanding of the environment’s role in the quantum-classical transition beyond the traditional paradigm of decoherence.  相似文献   

8.
9.
To make sense of quantum field theory in an arbitrary (globally hyperbolic) curved spacetime, the theory must be formulated in a local and covariant manner in terms of locally measurable field observables. Since a generic curved spacetime does not possess symmetries or a unique notion of a vacuum state, the theory also must be formulated in a manner that does not require symmetries or a preferred notion of a “vacuum state” and “particles”. We propose such a formulation of quantum field theory, wherein the operator product expansion (OPE) of the quantum fields is elevated to a fundamental status, and the quantum field theory is viewed as being defined by its OPE. Since the OPE coefficients may be better behaved than any quantities having to do with states, we suggest that it may be possible to perturbatively construct the OPE coefficients—and, thus, the quantum field theory. By contrast, ground/vacuum states—in spacetimes, such as Minkowski spacetime, where they may be defined—cannot vary analytically with the parameters of the theory. We argue that this implies that composite fields may acquire nonvanishing vacuum state expectation values due to nonperturbative effects. We speculate that this could account for the existence of a nonvanishing vacuum expectation value of the stress-energy tensor of a quantum field occurring at a scale much smaller than the natural scales of the theory. Fourth Award in the 2008 Essay Competition of the Gravity Research Foundation.  相似文献   

10.
We have recently constructed a many-body theory for composite excitons, in which the possible carrier exchanges between N excitons can be treated exactly through a set of dimensionless “Pauli scatterings” between two excitons. Many-body effects with free excitons turn out to be rather simple because these excitons are the exact one-pair eigenstates of the semiconductor Hamiltonian, in the absence of localized traps. They consequently form a complete orthogonal basis for one-pair states. As essentially all quantum particles known as bosons are composite bosons, it is highly desirable to extend this free exciton many-body theory to other kinds of “cobosons” — a contraction for composite bosons — the physically relevant ones being possibly not the exact one-pair eigenstates of the system Hamiltonian. The purpose of this paper is to derive the “Pauli scatterings” and the “interaction scatterings” of these cobosons in terms of their wave functions and the interactions which exist between the fermions from which they are constructed. It is also explained how to calculate many-body effects in such a very general composite boson system.  相似文献   

11.
12.
The famous “spooky action at a distance” in the EPR-scenario is shown to be a local interaction, once entanglement is interpreted as a kind of “nearest neighbor” relation among quantum systems. Furthermore, the wave function itself is interpreted as encoding the “nearest neighbor” relations between a quantum system and spatial points. This interpretation becomes natural, if we view space and distance in terms of relations among spatial points. Therefore, “position” becomes a purely relational concept. This relational picture leads to a new perspective onto the quantum mechanical formalism, where many of the “weird” aspects, like the particle-wave duality, the non-locality of entanglement, or the “mystery” of the double-slit experiment, disappear. Furthermore, this picture circumvents the restrictions set by Bell’s inequalities, i.e., a possible (realistic) hidden variable theory based on these concepts can be local and at the same time reproduce the results of quantum mechanics. PACS: 03.65.Ud, 04.60.Nc  相似文献   

13.
14.
We explore how energy-parity, a protective symmetry for the cosmological constant [Kaplan and Sundrum, 2005], arises naturally in the classical phase space dynamics of matter.We derive and generalize the Liouville operator of electrodynamics, incorporating a “varying alpha” and diffusion.In this model, a one-parameter deformation connects classical ensemble and quantum field theory. PACS:03.65.Ta, 03.70+k, 05.20.-y  相似文献   

15.
A qualification is suggested for the counterfactual reasoning involved in some aspects of time-symmetric quantum theory (which involves ensembles selected by both the initial and final states). The qualification is that the counterfactual reasoning should only apply to times when the quantum system has been subjected to physical interactions which place it in a “measurement-ready condition” for the unperformed experiment on which the counterfactual reasoning is based. The defining characteristic of a “measurement-ready condition” is that a quantum system could be found to have the counterfactually ascribed property without direct physical interaction with the eigenstate corresponding to that property.  相似文献   

16.
The “quantum duality principle” states that a quantisation of a Lie bialgebra provides also a quantisation of the dual formal Poisson group and, conversely, a quantisation of a formal Poisson group yields a quantisation of the dual Lie bialgebra as well. We extend this to a much more general result: namely, for any principal ideal domainR and for each primepεR we establish an “inner” Galois’ correspondence on the categoryHA of torsionless Hopf algebras overR, using two functors (fromHA to itself) such that the image of the first and the second is the full subcategory of those Hopf algebras which are commutative and cocommutative, modulop, respectively (i.e., they are“quantum function algebras” (=QFA) and“quantum universal enveloping algebras” (=QUEA), atp, respectively). In particular we provide a machine to get two quantum groups — a QFA and a QUEA — out of any Hopf algebraH over a fieldk: apply the functors tok[ν] ⊗k H forp=ν. A relevant example occurring in quantum electro-dynamics is studied in some detail. Presented at the 10th International Colloquium on Quantum Groups: “Quantum Groups and Integrable Systems”, Prague, 21–23 June 2001  相似文献   

17.
The FRT quantum Euclidean spaces O q N are formulated in terms of Cartesian generators. The quantum analogs of N-dimensional Cayley-Klein spaces are obtained by contractions and analytical continuations. Noncommutative constant-curvature spaces are introduced as spheres in the quantum Cayley-Klein spaces. For N = 5 part of them is interpreted as the noncommutative analogs of (1+3) space-time models. As a result the quantum (anti) de Sitter, Minkowski, Newton, Galilei kinematics with the fundamental length and the fundamental time are suggested. Presented at the International Colloquium “Integrable Systems and Quantum Symmetries”, Prague, 16–18 June 2005.  相似文献   

18.
The quantum Zeno effect (QZE) is often associated with the ironic maxim, “a watched pot never boils”, although the notion of “watching” suggests a continuous activity at odds with the usual (pulsed measurement) presentation of the QZE. We show how continuous watching can provide the same halting of decay as the usual QZE, and, for incomplete hindrance, we provide a precise connection between the interval between projections and the response time of the continuous observer. Thus, watching closely, but not so closely as to halt the “boiling”, is equivalent to—gives the same degree of partial hindrance as—pulsed measurements with a particular pulsing rate. Our demonstration is accomplished by treating the apparatus for the continuous watching as a fully quantum object. This in turn allows us a second perspective on the QZE, in which it is the modified level structure of the combined system/apparatus Hamiltonian that slows the decay. This and other considerations favor the characterization “dominated time evolution” for the QZE.  相似文献   

19.
Quantum theory has the property of “local tomography”: the state of any composite system can be reconstructed from the statistics of measurements on the individual components. In this respect the holism of quantum theory is limited. We consider in this paper a class of theories more holistic than quantum theory in that they are constrained only by “bilocal tomography”: the state of any composite system is determined by the statistics of measurements on pairs of components. Under a few auxiliary assumptions, we derive certain general features of such theories. In particular, we show how the number of state parameters can depend on the number of perfectly distinguishable states. We also show that real-vector-space quantum theory, while not locally tomographic, is bilocally tomographic.  相似文献   

20.
The Relational Blockworld (RBW) interpretation of non-relativistic quantum mechanics (NRQM) is introduced. Accordingly, the spacetime of NRQM is a relational, non-separable blockworld whereby spatial distance is only defined between interacting trans-temporal objects. RBW is shown to provide a novel statistical interpretation of the wavefunction that deflates the measurement problem, as well as a geometric account of quantum entanglement and non-separability that satisfies locality per special relativity and is free of interpretative mystery. We present RBW’s acausal and adynamical resolution of the so-called “quantum liar paradox,” an experimental set-up alleged to be problematic for a spacetime conception of reality, and conclude by speculating on RBW’s implications for quantum gravity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号