首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A variety of bulk polymers for the selective separation of chloramphenicol were synthesised from 2-vinylpyridine, diethylaminoethyl methacrylate or methacrylic acid monomers. Chromatographic evaluation indicated that chloramphenicol was retained under nonpolar elution conditions (k = 58.65) through selective hydrogen bonding and ionic interactions. The retention of chloramphenicol under aqueous elution conditions (k > 100) results from nonselective hydrophobic interactions. Under nonpolar elution conditions, the functional monomer employed imparted a significant influence on the recognition properties of the corresponding polymer. After solid-phase extraction using a molecularly imprinted polymer as sorbent and either an organic or aqueous washing solvent, nearly 100% recovery from the chloramphenicol standard solution was achieved, and nearly 90% recovery could be attained from spiked honey samples. The molecularly imprinted polymer was well suited to suppress matrix effects, and provided optimal preconcentration of the target molecule (chloramphenicol) prior to chromatographic analysis.  相似文献   

3.
4.
Microchimica Acta - The authors describe a method for the extraction and determination of phospholipids (PLs) from human milk fat by using a molecularly imprinted polymer (MIP) as the sorbent...  相似文献   

5.
6.
Molecularly imprinted polymers (MIPs) are synthetic polymers having a predetermined selectivity for a given analyte, or group of structurally related compounds, that make them ideal materials to be used in separation processes. In this sense, during past years a huge amount of papers have been published dealing with the use of MIPs as sorbents in solid-phase extraction, namely molecularly imprinted solid-phase extraction (MISPE). Although the majority of these papers were restricted to describe the use of different templates for different applications, several attempts proposing new alternatives to minimize the inherent drawbacks of the preparation and use of MIPs (i.e. template bleeding, tedious synthesis procedure, etc.) have been reported. Thus, this paper does not pretend to be a collection of MISPE-related papers but to give an overview on the significant attempts carried out during recent years to improve the performance of MIPs in solid-phase extraction. In addition, the use of MIPs packed in high performance liquid chromatography (HPLC) columns for the direct injection of crude sample extracts and the preparation of imprinted fibres for solid-phase microextraction will be also discussed.  相似文献   

7.
In this paper, a novel format for selective solid-phase extraction based on a molecularly imprinted polymer (MIP) is described. A small amount of MIP has been synthesized within the pores of commercial polyethylene (PE) frits and attached to its surface using benzophenone (BP), a photo-initiator capable to start the polymerisation from the surface of the support material. Key properties affecting the obtainment of a proper polymeric layer, such as polymerisation time and kind of cross-linker were optimised. The developed imprinted material has been applied as a selective sorbent for cleaning extracts of thiabendazole (TBZ), as model compound, from citrus samples. The use of different solvents for loading the analyte in the imprinted frits was investigated, as well as the binding capacity of the imprinted polymer. Imprinted frits showed good selectivity when loads were performed using toluene and a linear relationship was obtained for the target analyte up to 1000 ng of loaded analyte. Prepared composite material was applied to the SPE of TBZ in real samples extracts, showing an impressive clean-up ability. Calibrations showed good linearity in the concentration range of 0.05-5.00 μg g(-1), referred to the original solid sample, and the regression coefficients obtained were greater than 0.996. The calculated detection limit was 0.016 μg g(-1), low enough to satisfactory analysis of TBZ in real samples. RSDs at different spiking levels ranged below 15% in all the cases and imprinted frits were reusable without loss in their performance.  相似文献   

8.
Molecularly imprinted polymers (MIPs) displaying selective binding properties for the mycotoxin ochratoxin A (OTA) in polar/protic media were prepared. Crucial to the success of these efforts was the implementation of rationally designed OTA mimics as templates and a set of novel basic and neutral functional monomers, allowing the maximization of the template-functional monomer association via ion-pairing, hydrophobic and steric interactions. MIPs prepared with a 20:1:1:3 molar ratio of cross-linking agent, template mimic, basic functional monomer and hydrophobic auxiliary monomer produced polymers with superior recognition properties compared to materials generated with other stoichiometries. Chromatographic evaluation using the OTA mimics, OTA and a set of structurally closely related compounds as analytes revealed pronounced substrate selectivity of these MIPs in polar/protic media, the templates and OTA being bound with significantly higher affinities. Complementary substrate selectivities/affinities were observed in aprotic and apolar solvents. The possibility of solvent-dependent tuning of substrate selectivity/affinity and the high binding capacity recommend the developed MIPs as promising solid-phase extraction adsorbents for clean-up and pre-concentration of OTA from various biologically relevant matrices.  相似文献   

9.
Molecular recognition materials bearing halogen bonding-based binding sites were synthesized by a non-covalent imprinting technique using a 2,3,5,6-tetrafluoro-4-iodostyrene (TFIS) as the functional monomer. The binding sites were generated by co-polymerizing TFIS, styrene and divinylbenzene in the presence of the template molecule (4-dimethylaminopyridine—DMAP). The imprinted polymer preferentially adsorbed aminopyridine derivatives, suggesting that halogen bonding may play a role in the selective recognition of analytes by the synthesized synthetic receptor.  相似文献   

10.
In this work, molecularly imprinted solid-phase extraction (MISPE) has been used to selectively enrich, purify, or remove synephrine from Aurantii Fructus Immaturus. To this end, a molecularly imprinted polymer (MIP) was prepared by self-assembly from the template synephrine, the functional monomer methacrylic acid, and the crosslinker ethylene glycol dimethacrylate in 1:4:20 molar ratio. Subsequent molecular interrogation of the MIP binding sites revealed preferential structural selectivity for synephrine relative to other structurally related naturally occurring compounds (i.e. octopamine and tyramine ). This selectivity was subsequently exploited to achieve substantial sample clean-up of extracts of crude Aurantii Fructus Immaturus and Aurantii Fructus Immaturus stir-baked with bran. The purity of synephrine in the extracts after MISPE represented approximately 24.21-fold enrichment of the synephrine in the untreated extracts of Aurantii Fructus Immaturus stir-baked with bran. High recoveries (85–90%) from the samples proved that the method was valid for selective enrichment, purification, or removal of synephrine from Aurantii Fructus Immaturus.  相似文献   

11.
Molecularly imprinted covalent organic polymers were constructed by an imine‐linking reaction between 1,3,5‐triformylphloroglucinol and 2,6‐diaminopyridine and used for the selective solid‐phase extraction of benzoxazole fluorescent whitening agents from food samples. Binding experiments showed that imprinting sites on molecularly imprinted polymers had higher selectivity for targets compared with those of the corresponding non‐imprinted polymers. Parameters affecting the solid‐phase extraction procedure were examined. Under optimal conditions, actual samples were treated and the eluent was analyzed with high‐performance liquid chromatography with diode‐array detection. The results showed that the established method has a wide linearity, satisfactory detection limits and quantification limits, and acceptable recoveries. Thus, this developed method possesses the practical potential for the selective determination of benzoxazole fluorescent whitening agents in complex food samples.  相似文献   

12.
A method was developed for the determination of ractopamine in pig urine using molecularly imprinted solid-phase extraction (MISPE) as the sample clean-up technique combined with high-performance liquid chromatography. The molecularly imprinted polymer (MIP) was synthesized in acetonitrile-triethylamine system using ractopamine (RAC) as the template and acrylamide as the monomer. The binding capacity of the polymer toward RAC was found to be about 2.57 mg of ractopamine/g of polymer. The optimal procedures for MISPE consisted of conditioning with 3 mL methanol, equilibrating with 3 mL of water, loading volume of <10 mL of aqueous sample (pH 7), washing with 3 mL water and 3 mL methanol, and eluting with 5 mL of 5% ammonia in methanol. In the four spiked samples with the levels of 0.01, 0.1, 1.0 and 5.0 μg/mL, the mean recoveries of analyte on the MIP were higher than 90% with relative standard deviation <10%, and significant differences between imprinted and non-imprinted materials were observed. The MIP selectivity was evaluated by checking 11 drugs with similar and different molecular structures to that of RAC. The characteristics of three-dimensional cavities and hydrogen bond interaction were regarded as the main factors that dominated the retention of RAC on the MISPE cartridge.  相似文献   

13.
Molecular imprinted solid-phase extraction (MISPE) is a well known technique for the selective extraction and pre-concentration of analytes, are present at low levels in chemically complex materials. Herein, water-soluble, molecularly imprinted polymers (MIP) were prepared for solid-phase extraction of pseudoephedrine hydrochloride (PSE), which was monitored at 256 nm by the UV spectroscopy. MISPE conditions were optimized to allow the selective and determination of PSE in aqueous samples and composite materials, such as biological fluids and human urine. MIP was prepared by precipitation polymerization method, using methacrylic acid as a functional monomer and ethylene glycol dimethacrylate as a cross-linking agent in either acetonitrile or chloroform. The results suggest that the obtained MISPE exhibits high affinity for PSE, and the imprinted polymer demonstrates much higher efficiency than a non-imprinted polymer (NIP). The imprinting-induced extraction was confirmed by the determination of recovery values for NIP (4%) and MIP (80%) polymers, respectively. The binding capacity of the MIP for PSE was found of 47.6 mg g−1.  相似文献   

14.
15.
A new molecularly imprinted polymer (MIP) was specifically synthesized as a smart material for the recognition of metformin hydrochloride in solid-phase extraction. Particles of this MIP were packed into a stainless-steel tubing (50 mm x 0.8 mm i.d.) equipped with an exit frit. This micro-column was employed in the development of a molecularly imprinted solid-phase extraction (MISPE) method for metformin determination. The MISPE instrumentation consisted of a micrometer pump, an injector valve equipped with a 20-microl sample loop, a UV detector, and an integrator. With CH3CN as the mobile phase flowing at 0.5 ml/min, 95 +/- 2% binding could be achieved for 1200 ng of metformin from one injection of a phosphate-buffered sample solution (pH 2.5). Methanol + 3% trifluoroacetic acid was good for quantitative pulsed elution (PE) of the bound metformin. The MISPE-PE method, with UV detection at 240 nm, afforded a detection limit of 16 ng (or 0.8 microg/ml) for metformin. However, the micro-column interacted indiscriminately with phenformin with a 49 +/- 2% binding. A systematic investigation of binding selectivity was conducted with respect to sample composition (including the solvent, matrix, pH, buffer and surfactant effects). An intermediate step of differential pulsed elution used acetonitrile with 5% picric acid to remove phenformin and other structural analogues. A final pulsed elution of metformin for direct UV detection was achieved using 3% trifluoroacetic acid in methanol.  相似文献   

16.
Synthetic materials that can specifically recognize proteins will find wide application in many fields.In this report,bovine serum albumin was chosen as the template protein.Acrylamide and N,N’-methylenebisacrylamide were employed as the functional and cross-linker monomers,respectively.Molecularly imprinted macroporous monolithic materials that can preferentially bind the template protein in an aqueous environment were prepared by combination of molecular imprinting technique and freezing/thawing preparation method.The resulted imprinted macroporous monolithic columns were evaluated by utilizing as stationary phase in high performance liquid chromatography and solid-phase extraction materials.The experimental results indicated that the imprinted macroporous monolithic column exhibited good recognition for template protein,as compared with the control protein(hemoglobin),whereas the non-imprinted polymer(prepared under the same conditions except without addition template protein) had no selective properties.  相似文献   

17.
李桂珍  唐为扬  曹伟敏  王倩  朱涛 《色谱》2015,33(8):792-798
在相同的实验条件下,分别合成了以咖啡酸为模板的印迹分子聚合物和无模板分子聚合物。使用场发射扫描电镜法和吸附实验表征这两种聚合物材料的孔状结构和选择性吸附性能。然后利用印迹分子聚合物、无模板分子聚合物、C18萃取小柱这3种材料结合固相萃取法纯化山楂提取物中的咖啡酸,提取率分别为3.46、1.01、1.17 μg/g。为了优化固相萃取过程,实验研究了不同洗脱剂的影响。分别利用用氯化胆碱和甘油、氯化胆碱和尿素(摩尔比均为1:2)合成出两种低共熔溶剂。甲醇与这两种低共熔溶剂分别以不同的体积比混合作为洗脱剂,用于优化咖啡酸的固相萃取过程。实验结果表明,印迹分子聚合物是一种良好的固相萃取材料;当甲醇和甘油基低共熔溶剂在体积比为3:1混合时,表现出最好的洗脱能力,得到咖啡酸的回收率为82.32%。  相似文献   

18.
A method was developed to sensitively determine safranine T in wolfberry by molecularly imprinted solid-phase extraction (MISPE) coupled with high-performance liquid chromatography and laser-induced fluorescence detection (HPLC-LIF). The MISPE capillary monolithic column was prepared by water-bath in situ polymerization, using safranine T, methacrylic acid (MAA), and ethylene dimethacrylate (EDMA) as template, functional monomer, and cross-linker, respectively. The properties of the homemade MISPE capillary monolithic column, including capacity and specificity, were investigated under optimized conditions and the morphologies of inner polymers were characterized by scanning electron microscopy (SEM). The mean recoveries of safranine T in wolfberry ranged from 91.2 % to 92.9 % and the intraday and interday relative standard deviation (RSD) values all ranged from 3.4 % to 4.2 %. Good linearity was obtained over 0.001–1.0 μg mL–1 (r?=?0.9999) with a detection limit (S/N?=?3) of 0.4 ng g–1. Under the selected conditions, enrichment factors of over 90-fold were obtained and the extraction on the monolithic column effectively cleaned up the wolfberry matrix. The results demonstrated that the proposed MISPE-HPLC-LIF method could be applied to sensitively determine safranine T in wolfberry.
Figure
SEM images of the monolithic column prepared with different initiation reaction methods: a UV initiation; b water bath; c 5000-folds magnification of b; d 20000-folds magnification of b  相似文献   

19.
A new polymeric sorbent synthesised by exploiting molecular imprinting technology has been used to selectively extract naphthalene sulfonates (NSs) directly from aqueous samples. In the non-covalent molecular imprinting approach used to prepare this polymer, 1-naphthalene sulfonic acid (1-NS) and 4-vinylpyridine (4-VP) were used as a template molecule and functional monomer, respectively, and both dissolved in a mixture of methanol/water (4:1) as porogen together with the cross-linker ethylene glycol dimethacrylate. The new non-covalent molecularly imprinted polymer (MIP) prepared in aqueous environment was used as a sorbent in solid-phase extraction (SPE) to selectively extract a group of naphthalene mono- and disulfonates. When one litre of a standard aqueous solution, which contained a mixture of eight NSs, was percolated through the SPE cartridge, all the NSs were retained on the MIP because of the cross-reactivity of the polymer. Recoveries were higher than 80% for all the compounds even after a clean-up step with methanol (MeOH). The MIP was also used to analyse water from the Ebro river.  相似文献   

20.
Organophosphorus insecticides are widely employed in agriculture, and residues of them can remain after harvesting or storage. Pesticide residue control is an important task for ensuring food safety. Common chromatographic methods used in the determination of pesticide residues in food require clean-up and concentration steps prior to quantitation. While solid-phase extraction has been widely employed for this purpose, there is a need to improve selectivity. Due to their inherent biomimetic recognition systems, molecularly imprinted polymers (MIP) allow selectivity to be enhanced while keeping the costs of analysis low. In this work, a MIP that was designed to enable the selective extraction of fenitrothion (FNT) from tomatoes was synthesized using a noncovalent imprinting approach. The polymer was prepared using methacrylic acid as functional monomer and ethyleneglycol dimethacrylate as crosslinking monomer in dichloromethane (a porogenic solvent). The polymer was characterized by Fourier transform infrared spectroscopy, solid-state nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), and nitrogen sorption porosimetry. The pore structure and the surface area were evaluated using the BET adsorption method. To characterize the batch rebinding behavior of the MIP, the adsorption isotherm was measured, allowing the total number of binding sites, the average binding affinity and the heterogeneity index to be established. A voltammetric method of quantifying FNT during the molecularly imprinted solid-phase extraction (MISPE) studies was developed. The polymer was placed in extraction cartridges which were then used to clean up and concentrate FNT in tomato samples prior to high-performance liquid chromatographic quantitation. The material presented a medium extraction efficiency of 59% (for analyses performed with three different cartridges on three days and a fortification level of 5.0 μg g−1) and selectivity when used in the preparation of tomato samples, and presented the advantage that the polymer could be reused several times after regeneration. Figure    相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号