首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of oxidation of l-cystine by diperiodatoargentate(III) (DPA) in alkaline medium at a constant ionic strength of 0.10 mol dm−3 was studied spectrophotometrically. The reaction exhibits a 1:2 stoichiometry (l-cys:DPA) and is first order in [DPA]. The order in both [l-cystine] and [alkali] changes from first to zero order as their concentrations increase. Added periodate retards the rate of reaction. The effects of added products have been investigated. The active species of silver(III) is identified as monoperiodatoargentate(III) (MPA). The oxidation is thought to proceed via an MPA–l-cystine complex, which decomposes in a rate-determining step to give a free radical followed by a fast step to give the products. The products were identified by spot test, IR and GC–MS. The reaction constants involved in different steps of the mechanism were evaluated. The activation parameters with respect to the slow step of the mechanism were computed and discussed.  相似文献   

2.
The kinetics of Ru(III)-catalyzed oxidation of l-alanine (Ala) by diperiodatoargentate(III) (DPA) in alkaline medium at 25 °C and a constant ionic strength of 0.90 mol dm−3 was studied spectrophotometrically. The products are acetaldehyde, Ag(I), ammonia and bicarbonate. The [Ala] to [DPA] stoichiometry is 1:1. The reaction is first order in both [Ru(III)] and [DPA] and has less than unit order in both [Ala] and [alkali]. Addition of periodate has a retarding effect on the reaction. The effects of added products, ionic strength and dielectric constant of the reaction medium have been investigated. The reaction proceeds via a Ru(III)–Ala complex, which further reacts with one molecule of monoperiodatoargentate(III) in the rate-determining step. The reaction constants were calculated at different temperatures and the activation parameters have been evaluated.  相似文献   

3.
The oxidation of l-phenylalanine by hexacyanoferrate(III) (abbreviated as HCF) catalyzed by Ir(III) has been studied spectrophotometrically at 35 °C and at a constant ionic strength of 0.50 mol dm−3. The main oxidation product was identified as phenylpyruvic acid by physico-chemical and spectroscopic methods. The stoichiometry was found to be 2:1, i.e. 2 mol of hexacyanoferrate(III) reacted with 1 mol of phenylalanine. The reaction was first order with respect to both HCF and alkali concentration. The order with respect to [Phe] changed from first to zero as the concentration was increased. The effect of ionic strength was also investigated. Thermodynamic parameters were evaluated by studying the reaction at four different temperatures between 35 and 50 °C. Based on the experimental results, a suitable mechanism involving complex formation has been proposed.  相似文献   

4.
The kinetics of Ru(III) catalysed oxidation of l-leucine by diperiodatoargentate(III) (DPA) in alkaline medium at 298 K and a constant ionic strength of 0.60 mol dm−3 was studied spectrophotometrically. The oxidation products are pentanoic acid and Ag(I). The stoichiometry is [l-leucine]:[DPA] = 1:2. The reaction is of first order in Ru(III) and [DPA] and has less than unit order in both [l-leu] and [alkali]. The oxidation reaction in alkaline medium has been shown to proceed via a Ru(III)–l-leucine complex, which further reacts with one molecule of monoperiodatoargentate(III) (MPA) in a rate determining step followed by other fast steps to give the products. The main products were identified by spot test and spectral studies. The reaction constants involved in the different steps of the mechanism are calculated. The catalytic constant (Kc) was also calculated for the Ru(III) catalysed reaction at different temperatures. From the plots of log Kc versus 1/T, values of activation parameters with respect to the catalyst have been evaluated. The activation parameters with respect to the slow step of the mechanism are computed and discussed, and thermodynamic quantities are also determined. The active species of catalyst and oxidant have been identified.  相似文献   

5.
Summary The kinetics of oxidation of d-glucose, d-galactose, d-fructose, d-ribose, d-arabinose, d-xylose and 2-deoxyd-glucose by diperiodatoargentate(III) (DPA) have been investigated in alkaline medium. The order of the reaction with respect to [DPA] is unity while the order with respect to [sugar] is < 1 over the concentration range studied. The rate increases with an increase in [OH ] and there is a marginal decrease in the rate with an increase in [IO inf4 sup– ]. No significant dependence on ionic strength was found, but the rate increases with a decreasing dielectric constant. Formic acid and the corresponding aldonic acids were detected as the products of oxidation. The participation of the open chain form of the sugar and a mechanism involving the initial formation of a complex between the enediol of the sugar and AgIII are proposed.  相似文献   

6.
The oxidation of L-isoleucine by alkaline diperiodatoargentate(III) (DPA) at 298 K and a constant ionic strength of 0.80 mol dm−3 was studied spectrophotometrically. The stoichiometry is [L-isoleucine]: [DPA] = 1:2. The reaction is first order in [DPA] and has less than unit order in both [L-isoleucine] and [alkali] and retarding effect in The oxidation reaction in alkaline medium has been shown to proceed via a L-isoleucine–DPA complex, which further reacts with one molecule of DPA in a rate determining step followed by other fast steps to give the products. Spot test and IR were used to identify the main products. The reaction constants involved in the different steps of the mechanism are calculated. The activation parameters with respect to the slow step of the mechanism are computed and discussed, and thermodynamic quantities are also determined. The probable active species of oxidant have been identified. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
The kinetics of Os(VIII) catalysed oxidation of l-lysine by diperiodatoargentate(III) (DPA) in alkaline medium at T = 298 K and a constant ionic strength of 0.50 mol · dm?3 was studied spectrophotometrically. The oxidation products are aldehyde (5-aminopentanal) and Ag(I). The stoichiometry is i.e. [l-lysine]:[DPA] = 1:1. The reaction is of first order in [Os(VIII)] and [DPA] and is less than unit order in both [l-lys] and [alkali]. Addition of periodate has no effect on the reaction. Effect of added products, ionic strength, and dielectric constant of the reaction medium have been investigated. The oxidation reaction in alkaline medium has been shown to proceed via a Os(VIII)-l-lysine complex, which further reacts with one molecule of deprotonated DPA in a rate determining step followed by other fast steps to give the products. The main products were identified by spot test, IR, and GC-MS. The reaction constants involved in the different steps of the mechanism are calculated at different temperatures. The catalytic constant (KC) was also calculated at different temperatures. From the plots of lg KC versus 1/T, values of activation parameters with respect to the catalyst have been evaluated. The activation parameters with respect to slow step of the mechanism are computed and discussed and thermodynamic quantities are also determined. The active species of catalyst and oxidant have been identified.  相似文献   

8.
The kinetics and oxidation of diclofenac sodium (DFS) by diperiodatoargentate(III) (DPA) in alkaline medium at 298 K and at a constant ionic strength of 0.60 mol dm?3 were studied spectrophotometrically. The oxidation products were [2‐(2,6‐dicloro‐phynylamino)‐phenyl]‐methenol and Ag(I), identified by LC‐ESI‐MS and IR spectral studies. The reaction between DFS and DPA in alkaline medium exhibits 1:1 stoichiometry. The reaction is first order in [DPA] and has a less than unit order dependence each in [DFS] and [alkali]. Increasing concentrations of IO?4 retard the reaction. The active species of DPA proposed to be monoperiodatoargentate(III), and a mechanism is suggested. The rate constants involved in the different steps of the mechanism were determined and are discussed. The activation parameters with respect to a rate‐limiting step of the mechanism were determined. The thermodynamic quantities were also determined. Using the oxidation of DFS by DPA, DFS was analyzed by kinetic methods in urine and blood sample. The proposed method enables DFS analysis in the range from 5.0 × 10?5 to 5.0 × 10?3 mol dm?3. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 336–346, 2010  相似文献   

9.
The oxidation of d-panthenol by MnO4 was studied in the absence and in the presence of ruthenium(III) catalyst in alkaline medium at 298 K and at constant ionic strength of 0.50 mol dm−3 by spectrophotometry. The stoichiometry in both the cases was [panthenol]: [MnO4 ] = 1:4. The oxidation products were identified by IR and GC–MS. The reaction was first-order with respect to both MnO4 and ruthenium(III), while the orders with respect to both panthenol and alkali varied from first order to zero order as the concentrations increased. The effects of added products, ionic strength and dielectric constant were studied. The reaction constants, activation parameters and thermodynamic quantities were calculated for both the uncatalysed and catalysed reactions.  相似文献   

10.
The kinetics of oxidation of L-phenylalanine (L-Phe) by diperiodatoargentate(III) (DPA) in alkaline medium at a constant ionic strength of 0.25 mol/dm−3 has been studied spectrophotometrically. The reaction between DPA and L-phenylalanine in alkaline medium exhibits 1: 1 stoichiometry (L-phenylalanine: DPA). The reaction shows first order in [DPA] and has less than unit order dependence each in both [L-Phe] and [Alkali] and retarding effect of [IO4] under the reaction conditions. The active species of DPA is understood to be as monoperiodatoargentate(III) (MPA). The reaction is shown to proceed via a MPA-L-Phe complex, which decomposes in a rate-determining step to give intermediates followed by a fast step to give the products. The products were identified by spot and spectroscopic studies. The reaction constants involved in the different steps of the mechanisms were calculated. The activation parameters with respect to slow step of the mechanism were computed and discussed. The thermodynamic quantities were also determined for the reaction.  相似文献   

11.
The kinetics of palladium(II) catalysed oxidation of l-proline by permanganate in alkaline medium was studied spectrophotometrically. The reaction between permanganate and l-proline in alkaline medium exhibits 2:1 stoichiometry (KMnO4: l-proline). The reaction is first order with respect to [MnO4] and [Pd(II)], an apparent less than unit order in [alkali] and zero order in [l-proline] under the experimental conditions. Reaction rate increases with increase in ionic strength and decrease in solvent polarity of the medium. Addition of reaction products did not affect the rate significantly. A mechanism involving the intervention of a free radical generated by l-proline has been proposed. The reaction constants involved in the mechanism were evaluated. The activation parameters with respect to the slow step of the Scheme were evaluated and are discussed.  相似文献   

12.
The kinetics of ruthenium(III) catalyzed oxidation of chloramphenicol (CHP) by diperiodatocuprate(III) (DPC) in aqueous alkaline medium at a constant ionic strength of 0.1 mol l−1 was studied spectrophotometrically. The reaction between DPC and CHP in alkaline medium exhibits 1: 2 stoichiometry (CHP: DPC). The main oxidation products were identified by spot test, IR, NMR, and GC-MS spectral studies. The reaction is first order with respect to ruthenium(III) and DPC concentrations. The order with respect to chloramphenicol concentration varies from first order to zero order as the chloramphenicol concentration increases. As the alkali concentration increases the reaction rate increases with fractional order dependence on alkali concentration. Increase in periodate concentration decreases the rate. A mechanism adequately describing the observed regularities is proposed. The reaction constants involved in the different steps of the mechanism were calculated. The activation parameters with respect to limiting step of the mechanism are computed and discussed. Thermodynamic quantities are determined.  相似文献   

13.

Abstract  

Oxidation of the amino acid l-phenylalanine by diperiodatocuprate(III) in alkaline medium at constant ionic strength of 0.25 mol dm−3 was studied spectrophotometrically at different temperatures (298–313 K). The reaction between diperiodatocuprate(III) and l-phenylalanine in alkaline medium exhibits 1:2 stoichiometry. Intervention of free radicals was observed in the reaction. Based on the observed orders and experimental evidence, a mechanism involving monoperiodatocuprate(III) as the reactive oxidant species has been proposed, proceeding through the formation of a complex and reaction of the intermediate of l-phenylalanine with monoperiodatocuprate(III) to give the products. The products were identified by spot test, infrared (IR), and gas chromatography-mass spectrometry (GC-MS). The reaction constants involved in the different steps of the mechanism were calculated. The activation parameters with respect to the slow step of the mechanism were computed and are discussed. The thermodynamic quantities were determined for different equilibrium steps. The isokinetic temperature was also calculated and found to be 331 K.  相似文献   

14.
The kinetics of oxidation of 2-aminoethanol and 3-amino-1-propanol by diperiodatoargentate(III) (DPA) were carried out spectrophotometrically in alkaline medium in the temperature range of 293.2-308.2 K. The reaction showed first order with respect to [DPA] and each reductant. The observed rate constant (k obs) decreased with the increase of [IO4 -] and increased with the increase of [OH-]. Increasing ionic strength of the medium decreased the rate. Investigations of the reaction at different temperatures allowed the determination of the activation parameters for the slow step of proposed mechanism. The proposed mechanism and the derived rate laws found consistent with the observed kinetics.  相似文献   

15.
The kinetics of oxidation of pyruvate by diperiodatoargentate( III) ion (DPA) has been studied spec-trophotometrically in alkaline medium. It was found that the reaction order with respect to both DPA and pyruvate is unity and the rate equation can be expressed asThe rate increases with the increase in [OH ] and decreases with the increase in [periodate]. There is a positive ionic strength effect in this reaction system. A mechanism has been proposed to explain the experimental results. The observed activation parameters are presented.  相似文献   

16.
Summary The kinetics of the OsVIII-catalyzed oxidation of phosphite by diperiodatoargentate(III) (DPA) have been investigated in aqueous base. The reaction rate is independent of [DPA], but first order with respect to [phosphite] and to [OsVIII]. The rate of reaction increases with increase in [KOH] and tends to a limiting value. Activation parameters have been calculated and suitable mechanism is proposed to explain the observed results.  相似文献   

17.
The oxidative behavior of d-dextrose toward diperiodatoargentate(III) (DPA) has been studied in the absence and presence of anionic and cationic micelles of sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB), respectively. The kinetics is based on the reduction of silver(III) to silver(I) by d-dextrose under pseudo-first-order conditions. The monoperiodatoargentate(III) ions act as active oxidants in comparison to that of DPA. The reactions are first- and fractional-order dependence with respect to [DPA] and [d-dextrose], respectively. The reaction rates decrease with [H+] and [periodate]. The premicellar environment of SDS and CTAB strongly inhibits the reaction rate. Inhibition is due to favorable thermodynamic/electrostatic binding between the Ag(III) complex and CTAB monomer aggregates. A suitable mechanism involving a one-electron transfer (rate-determining step) from d-dextrose to the silver(III) species has been proposed. Activation parameters have been evaluated and discussed.  相似文献   

18.
Aqueous solution of water soluble colloidal MnO2 was prepared by Perez-Benito method. Kinetics of l-methionine oxidation by colloidal MnO2 in perchloric acid (0.93 × 10−4 to 3.72 × 10−4 mol dm−3) has been studied spectrophotometrically. The reaction follows first-order kinetics with respect to [H+]. The first-order kinetics with respect to l-methionine at low concentration shifts to zero order at higher concentration. The effects of [Mn(II)] and [F] on the reaction rate were also determined. Manganese (II) has sigmoidal effect on the rate reaction and act as auto catalyst. The exact dependence on [Mn(II)] cannot be explained due to its oxidation by colloidal MnO2. Methionine sulfoxide was formed as the oxidation product of l-methionine. Ammonia and carbon dioxide have not been identified as the reaction products. The mechanism with the observed kinetics has been proposed and discussed.  相似文献   

19.
The kinetics of the oxidation of ruthenium(III) (Ru(III)) and osmium(VIII) (Os(VIII)) catalyzed oxidation of d-glucose (d-Glu) by silver(III) periodate complex (DPA) in aqueous alkaline medium at 298 K and constant ionic strength 0.003 mol·dm?3 was studied spectrophotometrically. The reaction between d-Glu and DPA in alkaline medium exhibits 1:2 stoichiometry in both catalyzed reactions (d-Glu:DPA). The main products were identified as D-arabinonic acid and formic acid by spot tests, GC–MS spectra and chromatographic techniques. The reaction orders with respect to various species concentrations were determined. Also, the active species of catalyst and oxidant have been identified. Probable mechanisms were proposed. The activation parameters with respect to the slow step of the mechanism were computed and discussed and thermodynamic quantities were also calculated. It has been observed that the catalytic efficiency for the present reaction is in the order Os(VIII) > Ru(III).  相似文献   

20.
The kinetics of oxidation of atenolol (ATN) by diperiodatocuprate(III) (DPC) in aqueous alkaline medium at a constant ionic strength of 0.10 mol dm−3 was studied spectrophotometrically. The reaction between DPC and ATN in alkaline medium exhibits 1:2 stoichiometry (ATN:DPC). The reaction is of first order in [DPC] and has less than unit order in both [ATN] and [alkali]. However, the order in [ATN] and [alkali] changes from first order to zero order as their concentration increase. Intervention of free radicals was observed in the reaction. Increase in periodate concentration decreases the rate. The oxidation reaction in alkaline medium has been shown to proceed via a monoperiodatocuprate(III)–ATN complex, which decomposes slowly in a rate-determining step followed by other fast steps to give the products. The main oxidative products were identified by spot test, IR, NMR and LC–ESI-MS studies. The reaction constants involved in the different steps of the mechanism are calculated. The activation parameters with respect to slow step of the mechanism are computed and discussed, and thermodynamic quantities are also determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号