首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper deals with the theoretical aspects of chemical-dissolution front instability problems in two-dimensional fluid-saturated porous media including medium anisotropic effects. Since a general anisotropic medium can be described as an orthotropic medium in the corresponding principal directions, a two-dimensional orthotropic porous medium is considered to derive the analytical solution for the critical condition, which is used to judge whether or not the chemical dissolution front can become unstable during its propagation. In the case of the mineral dissolution ratio (that is defined as the ratio of the dissolved-mineral equilibrium concentration in the pore-fluid to the molar concentration of the dissolvable mineral in the solid matrix of the fluid-saturated porous medium) approaching zero, the corresponding critical condition has been mathematically derived when medium permeability anisotropic effects are considered. As a complementary tool, the computational simulation method is used to simulate the morphological evolution of chemical dissolution fronts in two-dimensional fluid-saturated porous media including medium anisotropic effects. The related theoretical and numerical results demonstrated that: (1) a decrease in the medium anisotropic permeability factor (or ratio), which is defined as the ratio of the principal permeability in the transversal direction to that in the longitudinal direction parallel to the pore-fluid inflow direction, can stabilize the chemical dissolution front so that it becomes more difficult for a planar chemical-dissolution front to evolve into different morphologies in the chemical dissolution system; (2) the medium anisotropic permeability ratio can have significant effects on the morphological evolution of the chemical dissolution front. When the Zhao number of the chemical dissolution system is greater than its critical value, the greater the medium anisotropic permeability ratio, the faster the irregular chemical-dissolution front grows.  相似文献   

2.
The main purpose of this article is to investigate, both theoretically and computationally, the effects of mineral dissolution ratios on the different respects of chemical-dissolution front instability problems in fluid-saturated porous media. In order to get a better understanding of how the mineral dissolution ratio affects the propagation and evolution of a planar chemical-dissolution front in an infinite space consisting of a fluid-saturated porous medium, the theoretical analysis method is used to derive the generous solution to the propagation speed of the planar chemical-dissolution front, while the computational simulation method is employed to simulate the detailed evolution process when the planar chemical-dissolution front is evolved into complicated morphologies at the supercritical Zhao numbers. The related theoretical results reveal that the mineral dissolution ratio plays an important role in controlling the propagation speed of a planar chemical-dissolution front in the fluid-saturated porous medium. An increase in the value of the mineral dissolution ratio can result in a remarkable decrease in the value of the propagation speed of a planar chemical-dissolution front. On the other hand, the related computational simulation results demonstrate that the mineral dissolution ratio has a considerable influence on the evolution pattern of a planar chemical-dissolution front during its propagation in the fluid-saturated porous medium. An increase in the mineral dissolution ratio can reduce the likelihood for a planar chemical-dissolution front to evolve from the initial planar shape into different morphologies within the fluid-saturated porous medium of finite size.  相似文献   

3.
In this article, the effect of reactive surface areas associated with different particle shapes on the reactive infiltration instability in a fluid-saturated porous medium is investigated through analytically deriving the dimensionless pore-fluid pressure-gradient of a coupled system between porosity, pore-fluid flow and reactive chemical-species transport within two idealized porous media consisting of spherical and cubic grains respectively. Compared with the critical dimensionless pore-fluid pressure-gradient of the coupled system, the derived dimensionless pore-fluid pressure-gradient can be used to assess the instability of a chemical dissolution front within the fluid-saturated porous medium. The related theoretical analysis has demonstrated that (1) since the shape coefficient of spherical grains is greater than that of cubic grains, the chemical system consisting of spherical grains is more unstable than that consisting of cubic grains, and (2) the instability likelihood of a natural porous medium, which is comprised of irregular grains, is smaller than that of an idealized porous medium, which is comprised of regular spherical grains. To simulate the complicated morphological evolution of a chemical dissolution front in the case of the chemical dissolution system becoming supercritical, a numerical procedure is proposed for solving this kind of problem. The related numerical results have demonstrated that the reactive surface area associated with different particle shapes can have a significant influence on the morphological evolution of an unstable chemical-dissolution front within fluid-saturated porous rocks.  相似文献   

4.
基于Biot的孔隙介质理论,研究了正交各向异性含液饱和多孔介质中应力波的传播特性.本文引入动态渗透率,导出了整个实频域内应力波传播的复特征方程及其解析解,给出了各种应力波成分的波速和衰减的解析表达武,计算了频散曲线和衰减曲线,并讨论了各类应力波之间的耦合关系及介质的各向异性对应力波传播的影响.  相似文献   

5.
横观各向同性液体饱和多孔介质中平面波的传播   总被引:11,自引:2,他引:11  
汪越胜  章梓茂 《力学学报》1997,29(3):257-268
基于孔隙介质的Biot理论1,研究了横观各向同性液体饱和多孔介质中平面波的传播特性。首先导出了波传播的特征方程并给出了其解析解,结果显示:有4种不同波速的平面体波传播;第一准纵波,第二准纵波,准横波和反平面横波。文中给出了波速和衰减的解析表达式,数值计算了频散曲线和衰减曲线,并讨论了各类准体波位移之间的耦合关系。  相似文献   

6.
The two-dimensional problem of supercritical carbon dioxide injection into an aquifer is solved. Shocks and rarefaction waves propagating in a sequence from an injection well into the formation are described within the framework of a complete nonisothermal model of flows in a porous medium. In the approximation of isothermal immiscible water and carbon dioxide flow the hydrodynamic stability of the leading displacement front is investigated for various reservoir pressures and temperatures. The parameters of unstable fronts are determined using a sufficient instability condition formulated in analytic form. The approximate analytic results are supported by the direct numerical simulation of CO2 injection using the complete model in which thermal effects and phase transitions are taken into account.  相似文献   

7.
The paper studies the coupled diffusion-dissolution process in reactive porous media, separated by a fracture channel. An aggressive solute, corresponding for e.g., to a complete demineralization that dissolves the solid skeleton of the surrounding porous material, is prescribed at the inlet of the fracture. By means of asymptotic dimensional analysis it is shown that for large times the diffusion length in the fracture develops with the quadratic root of time. In comparison with the 1D-Stefan Problem, in which the dissolution front evolves with the square root of time, this indicates that the overall solute evacuation through the structure slows down in time. This phenomenon is referred to as a diffusive solute congestion in the fracture. This asymptotic behavior is confirmed by means of model-based simulation, and the relevant material parameters, related to only the chemical equilibrium condition, are identified. The obtained results suggest that the presence of a small crack does not significantly increase the propagation of the dissolution front in the porous bulk, and hence the overall chemical degradation of the porous material. The same applies to other diffusion induced demineralization, mineralization, sorption and melting processes, provided that the convective transport of the solute in the crack is small in comparison with the solute diffusion. The result is relevant for several problems in durability mechanics: calcium leaching of concrete in nuclear waste containment, mineralization and demineralization in bone remodeling, chloride penetration, etc.  相似文献   

8.
A weakly nonlinear stability analysis of wave propagation in two superposed dielectric fluids streaming through porous media in the presence of vertical electric field producing surface charges is investigated in three dimensions. The method of multiple scales is used to obtain a dispersion relation for the linear problem and a nonlinear Klein–Gordon equation with complex coefficients describing the behavior of the perturbed system at the critical point of the neutral curve. In the linear case, we found that the system is always unstable for all physical quantities (including the dimension l), even in the presence of electric fields and porous medium, in the nonlinear case, novel stability conditions are obtained, and the effects of various parameters on the stability of the system are discussed numerically in detail.  相似文献   

9.
Finger type double diffusive convective instability in a fluid-saturated porous medium is studied in the presence of coupled heat-solute diffusion. A local thermal non-equilibrium (LTNE) condition is invoked to model the Darcian porous medium which takes into account the energy transfer between the fluid and solid phases. Linear stability theory is implemented to compute the critical thermal Rayleigh number and the corresponding wavenumber exactly for the onset of stationary convection. The effects of Soret and Dufour cross-diffusion parameters, inter-phase heat transfer coefficient and porosity modified conductivity ratio on the instability of the system are investigated. The analysis shows that positive Soret mass flux triggers instability and positive Dufour energy flux enhances stability whereas their combined influence depends on the product of solutal Rayleigh number and Lewis number. It also reveals that cell width at the convection threshold gets affected only in the presence of both the cross-diffusion fluxes. Besides, asymptotic solutions for both small and large values of the inter-phase heat transfer coefficient and porosity modified conductivity ratio are found. An excellent agreement is found between the exact and asymptotic solutions.  相似文献   

10.
The stability of vertical flows through a horizontally extended two-dimensional region of a porous medium is considered in the case of presence of a phase transition front. It is shown that the plane steady-state phase transition front may have several steady-state positions in the wettable porous medium and the necessary condition of their existence is obtained. The spectral stability of the plane phase transition interface is investigated. It is found that in the presence of capillary forces exerted on the phase transition front in the wettable medium the plane front can be destabilized on the mode with both infinite and zero wavenumbers (short- and long-wave instabilities); the short-wave instability can then exist even in the case of the sole steady-state position of the front.  相似文献   

11.
The stability of a triply diffusive fluid-saturated porous layer is investigated. A linear stability analysis similar to that of Pearlstein et al [1] is presented. This allows us to make a thorough investigation of the topology of the neutral curves. For some values of the thermal and solute diffusivities we obtain highly unusual neutral curves, in particular a heart-shaped, disconnected oscillatory curve. The effect of this is that three critical Rayleigh numbers are required to fully specify the linear stability criteria, a novel result in porous convection. The influence of nonlinear terms is likely to have important consequences for the experimental realisation of the linear results and so we investigate the nonlinear stability of the problem by making use of the energy method. This provides an unconditional nonlinear stability boundary and enables us to identify possible regions of subcritical instability. Received: April 4, 1996  相似文献   

12.
Theoretical analysis of crack front instability in mode I+III   总被引:1,自引:0,他引:1  
This paper focusses on the theoretical prediction of the widely observed crack front instability in mode I+III, that causes both the crack surface and crack front to deviate from planar and straight shapes, respectively. This problem is addressed within the classical framework of fracture mechanics, where the crack front evolution is governed by conditions of constant energy-release-rate (Griffith criterion) and vanishing stress intensity factor of mode II (principle of local symmetry) along the front. The formulation of the linear stability problem for the evolution of small perturbations of the crack front exploits previous results of Movchan et al. (1998) (suitably extended) and Gao and Rice (1986), which are used to derive expressions for the variations of the stress intensity factors along the front resulting from both in-plane and out-of-plane perturbations. We find exact eigenmode solutions to this problem, which correspond to perturbations of the crack front that are shaped as elliptic helices with their axis coinciding with the unperturbed straight front and an amplitude exponentially growing or decaying along the propagation direction. Exponential growth corresponding to unstable propagation occurs when the ratio of the unperturbed mode III to mode I stress intensity factors exceeds some “threshold” depending on Poisson's ratio. Moreover, the growth rate of helical perturbations is inversely proportional to their wavelength along the front. This growth rate therefore diverges when this wavelength goes to zero, which emphasizes the need for some “regularization” of crack propagation laws at very short scales. This divergence also reveals an interesting similarity between crack front instability in mode I+III and well-known growth front instabilities of interfaces governed by a Laplacian or diffusion field.  相似文献   

13.
Derived in this work are the Mode I stress intensity factor results for a constant velocity semi-infinite crack moving in a fluid-saturated porous medium with finite height. Two limiting cases are discussed; they correspond to a low and high speed crack propagation. To be expected is that the crack front stress intensification would increase as the medium height is reduced in relation to the segment length in which mechanical pressure is applied. Moreover, the stress intensity factor for the high speed crack is larger than the low speed crack, the magnification of which depends on the material. Dissatisfaction of the crack surface and tip boundary condition is found in the present solution which calls possibly for the additional consideration of a local boundary layer as discussed by other authors.  相似文献   

14.
The linear stability of thermal convection in a rotating horizontal layer of fluid-saturated porous medium, confined between two rigid boundaries, is studied for temperature modulation, using Brinkman’s model. In addition to a steady temperature difference between the walls of the porous layer, a time-dependent periodic perturbation is applied to the wall temperatures. Only infinitesimal disturbances are considered. The combined effect of rotation, permeability and modulation of walls’ temperature on the stability of flow through porous medium has been investigated using Galerkin method and Floquet theory. The critical Rayleigh number is calculated as function of amplitude and frequency of modulation, Taylor number, porous parameter and Prandtl number. It is found that both, rotation and permeability are having stabilizing influence on the onset of thermal instability. Further it is also found that it is possible to advance or delay the onset of convection by proper tuning of the frequency of modulation of the walls’ temperature.  相似文献   

15.
The effect of local thermal non-equilibrium (LTNE) on the onset of thermomagnetic convection in a ferromagnetic fluid-saturated horizontal porous layer in the presence of a uniform vertical magnetic field is investigated. A modified Forchheimer-extended Darcy equation is employed to describe the flow in the porous medium, and a two-field model is used for temperature representing the solid and fluid phases separately. It is found that both the critical Darcy–Rayleigh number and the corresponding wave number are modified by the LTNE effects. Asymptotic solutions for both small and large values of scaled interphase heat transfer coefficient H t are presented and compared with those computed numerically. An excellent agreement is obtained between the asymptotic and the numerical results. Besides, the influence of magnetic parameters on the instability of the system is also discussed. The available results in the literature are recovered as particular cases from the present study.  相似文献   

16.
A thin film of a power–law fluid flowing down a porous inclined plane is considered. It is assumed that the flow through the porous medium is governed by the modified Darcy’s law together with Beavers–Joseph boundary condition for a general power–law fluid. Under the assumption of small permeability relative to the thickness of the overlying fluid layer, the flow is decoupled from the filtration flow through the porous medium and a slip condition at the bottom is used to incorporate the effects of the permeability of the porous substrate. Applying the long-wave theory, a nonlinear evolution equation for the thickness of the film is obtained. A linear stability analysis of the base flow is performed and the critical condition for the onset of instability is obtained. The results show that the substrate porosity in general destabilizes the film flow system and the shear-thinning rheology enhances this destabilizing effect. A weakly nonlinear stability analysis reveals the existence of supercritical stable and subcritical unstable regions in the wave number versus Reynolds number parameter space. The numerical solution of the nonlinear evolution equation in a periodic domain shows that the fully developed nonlinear solutions are either time-dependent modes that oscillate slightly in the amplitude or time independent stable two-dimensional nonlinear waves with large amplitude referred to as ‘permanent waves’. The results show that the shape and the amplitude of the nonlinear waves are strongly influenced by the permeability of the porous medium and the shear-thinning rheology.  相似文献   

17.
The reflection and transmission characteristics of an incident plane P1 wave from the interface of a fluid-saturated single porous solid and a fluid-saturated double porosity solid are investigated. The fluid-saturated porous solid is modeled with the classic Biot’s theory and the double porosity medium is described by an extended Biot’s theory. In a double-porosity model with dual-permeability there exist three compressional waves and a shear wave. The effects of the incident angle and frequency on amplitude ratios of the reflected and transmitted waves to the incident wave are discussed. Two boundary conditions are discussed in detail: (a) Open-pore boundary and (b) Sealed-pore boundary. Numerical results reveal that the characteristics of the reflection and transmission coefficients to the incident angle and the frequency are quite different for the two cases of boundary conditions. Properties of the bulk waves existing in the fluid-saturated porous solid and the double porosity medium are also studied.  相似文献   

18.
The problem of motion of a concentrated load along the surface of a fluid-saturated porous medium is studied for a subsonic range of speeds. An analytical solution is found. It is shown that there exists a critical speed equal to the speed of the Rayleigh-type surface waves in a porous elastic medium. If this critical speed is exceeded, then the behavior of the solution and the free surface shape are changed. The free surface shape is analyzed at different speeds.  相似文献   

19.
The triple diffusive convection in an Oldroyd-B fluid-saturated porous layer is investigated by performing linear and weakly nonlinear stability analyses. The condition for the onset of stationary and oscillatory is derived analytically. Contrary to the observed phenomenon in Newtonian fluids, the presence of viscoelasticity of the fluid is to degenerate the quasiperiodic bifurcation from the steady quiescent state. Under certain conditions, it is found that disconnected closed convex oscillatory neutral curves occur, indicating the requirement of three critical values of the thermal Darcy-Rayleigh number to identify the linear instability criteria instead of the usual single value, which is a novel result enunciated from the present study for an Oldroyd-B fluid saturating a porous medium. The similarities and differences of linear instability characteristics of Oldroyd-B, Maxwell, and Newtonian fluids are also highlighted. The stability of oscillatory finite amplitude convection is discussed by deriving a cubic Landau equation, and the convective heat and mass transfer are analyzed for different values of physical parameters.  相似文献   

20.
The instability of a plane front between two phases of the same fluid (steam and water) in a porous medium is considered. The configuration is taken to be initially stationary with the more dense phase overlying the less dense phase. The frontal region is assumed sharp, so that macroscopic boundary conditions can be utilized. This assumption precludes the existence of dispersion instabilities. The stabilizing influence of phrase transition as well as the implication of different macroscopic pressure boundary conditions on the stability of the front are discussed and illustrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号