首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polypropylene (PP) particles were chemically coated with polypyrrole (PPy). The content of polypyrrole varied from 0.8 to 7.6 wt.-%. Electrical conductivity of compression moulded samples depends on the concentration of polypyrrole and reached values from 4×10−10 to 5×10−3 S/cm, which is about 7 orders of magnitude higher than the conductivity in the blends prepared by mechanical mixing of PP and PPy in the same PPy concentration range. Highly conductive composites were also obtained from a mixture of coated and non-coated PP particles. The PP/PPy composites were characterized by elemental analysis, SEM and mechanical testing. The antistatic properties of PP/PPy composites were demonstrated. The electrical and mechanical properties depend on processing of composites.  相似文献   

2.
Aromatic amine curing agent with flexible unit in backbone, 1,4-bis (4-diaminobenzene-1-oxygen) n-butane (DDBE), was synthesized, and the structure was confirmed by FT-IR and 1H NMR. The curing kinetics of tetraglycidyl methylene dianiline (TGDDM, or AG80) using DDBE and 4,4′-bis-(diaminodiphenyl) methane (DDM) as curing agents, respectively, were comparatively studied by non-isothermal DSC with a model-fitting Málek approach and a model-free advanced isoconversional method of Vyazovkin. The dynamic mechanical properties and thermal stabilities of the cured materials were investigated by DMTA and TG, respectively. The results showed that the activation energy of AG80/DDBE system was slightly higher than that of AG80/DDM system. ?esták-Berggren model can generally simulate well the reaction rates of these two systems. DMTA measurements showed that the storage modulus of cured AG80/DDBE is similar to that of cured AG80/DDM at the temperature below glass transition temperature (T g) and lower than that of cured AG80/DDM at the temperature above glass transition temperature, while T g of cured AG80/DDBE is lower than that of cured AG80/DDM. TG showed that the thermal stabilities of these two cured systems are similar.  相似文献   

3.
Composite poly(vinyl alcohol) cryogels containing particles of cross-linked dextran gels (Sephadexes and their ion-exchange derivatives with different ionogenic groups) as fillers were prepared and studied. It was shown that mechanical and thermal-physical properties of such composites were affected by the presence of ionogenic groups on the particles of dispersed fillers: as the ionite concentration increases, less rigid (than in the case of unmodified Sephadex particles) filled cryogels were formed. The properties of composite cryogels depend on the nature and concentration of counterion added with the ionite. Substantial increase in the rigidity and melting point of composites was observed when using strong anionites in the OH-form and strong cationites in the H+-form as fillers.  相似文献   

4.
Thermoplastic polycarbonate (PC) and nylon 6 (NY) composites with cenosphere and hollow glass beads were prepared and their mechanical, rheological, thermal and flame retardency properties were studied. The flexural behavior of the composites increased after loading with cenosphere and hollow glass beads. The tensile strength of the PC composites was enhanced up to 80 N mm–2 as compared to pure PC while no remarkable change was observed in case of nylon 6 composites. Study of thermogravimetric Analysis (TGA) showed that the thermal stability of all the composites (Polycarbonate/cenosphere, Polycarbonate/hollow glass beads, Nylon 6/cenosphere and Nylon 6/hollow glass beads) increased. It was concluded that both the fillers enhanced the non-flammability of the polymers. Limiting oxygen index (LOI) value of all the composites showed an increase with increase in the concentration of filler. The optimal results of LOI and UL 94 were observed in composites with 8% cenosphere and 12 % cenosphere in case of Nylon 6. Cenosphere led to superior mechanical properties of polycarbonate and nylon 6 in comparison to hollow glass beads which suggested the composites can find use in automotive, industrial, pump component and for manufacturing of light weight parts in aeronautic industry at lower economic value.  相似文献   

5.
The kinetics of the initial stage of mechanical alloying in the Fe/Zr system (80 : 20 at. %) was studied using X-ray diffraction, Mössbauer spectroscopy, and magnetic measurements. The stage of structural disordering of the mixture is shown to proceed quickly and end by a dose of 9 kJ g–1. Further, intense formation of the amorphous phase takes place; as the dose of 16 kJ g–1 is reached, all zirconium contained in the initial mixture passes into this phase, and its amount does not grow any more. The composition of the amorphous phase corresponds to Fe73Zr27 and remains constant throughout the mechanical processing up to a dose of 25 kJ g–1. Annealing of the reaction mixture at 700°C results in decomposition of the amorphous phase and formation of an intermetallic with the composition and structure corresponding to Fe23Zr6. No contamination of the mixture by the material of the balls and vessel during mechanical treatment was detected.  相似文献   

6.
4-hydroxy-3,5-pyridinedicarboxylic acid (DQ58) and 4-hydroxy-1-methyl-3,5-pyridinedicarboxylic acid (DQ71508) have been synthesized, and their Fe(III), Al(III), Cu(II), and Zn(II) coordination properties have been studied by potentiometry, UV–Vis spectroscopy (in the case of Fe(III), Al(III), Cu(II)), 1H-NMR (for Al(III)) and EPR (for Cu(II)). The thermodynamic results were used to model the extent of the toxic metal ions decorporation (Fe(III) or Al(III)) in the presence of the essential metal ions (Cu(II) or Zn(II)). DQ58 and DQ71508 were demonstrated to interact with human serum albumin (HSA), which is assumed to be the main serum transporter of the chelators, and binding constants have been obtained by ultrafiltration. IC50 values of 5.185 × 10?3 and 1.033 × 10?3 mol·L?1 were collected after 24 and 48 h of treatment with DQ71508 towards human embryonic kidney HEK-293 cells, demonstrating the relatively low cytotoxicity of this compound. According to these results, both DQ58 and DQ71508 seem to be potential candidates for Fe chelation therapy, and DQ58 is a better Fe(III) chelator than DQ71508.  相似文献   

7.
The processing of poly(lactic acid) (injection and extrusion/injection) as well as annealing of processed materials were studied in order to analyze the variation of its chemical structure, thermal degradation and mechanical properties. Processing of PLA was responsible for a decrease in molecular weight, as determined by GPC, due to chain scission. The degree of crystallinity was evaluated by means of differential scanning calorimetry and X-ray diffraction. It was found that mechanical processing led to the quasi disappearance of crystal structure whereas it was recovered after annealing. These findings were qualitatively corroborated by means of FTIR. By analyzing 1H NMR and 13C NMR chemical shifts and peak areas, it was possible to affirm that the chemical composition of PLA did not change after processing, but the proportion of methyl groups increased, thus indicating the presence of a different molecular environment. The thermal stability of the various materials was established by calculating various characteristic temperatures from thermograms as well as conversion and conversion derivative curves. Finally, the mechanical behaviour was determined by means of tensile testing (Young modulus, yield strength and elongation at break).  相似文献   

8.
Electrically and thermally conductive polymer composites on the basis of biodegradable poly(lactic acid) (PLA) were developed and studied in this work. Pristine single-walled carbon nanotubes (CNTs) and powder of natural graphite (G) were used as fillers in polymer composites. PLA-based composites were prepared by melt-compounding method. The volume resistivity of PLA/CNT composites can be changed by more than ten orders of magnitude compared to that for neat PLA. The thermal conductivity of PLA/G composites can be changed from 0.193 W⋅m−1⋅K−1 (neat PLA) up to 2.73 W⋅m−1⋅K−1. Loading small quantity of CNTs into PLA/G composites increases the thermal conductivity not less than by 40% of magnitude. Besides, all developed PLA-based composites are suitable for processing by injection molding, extrusion or additive manufacturing technology (3D printing).  相似文献   

9.
In this work, elastomer‐toughened polypropylene (PP)/magnesium hydroxide (MH) composites with ethylene–octene copolymer (POE) were prepared in a twin‐screw extruder and then injection‐molded. The structure, mechanical properties, phase morphology, and rheological behaviors of PP/POE/MH ternary composites were studied. The mechanical properties and fracture behaviors of PP/POE/MH ternary composites are strongly influenced by the incorporation of POE copolymer. The addition of POE causes a significant improvement in the impact strength of the composites, from 3.6 kJ/m2 in untoughened composites to 47.4 kJ/m2 in PP composites containing 30 phr POE. This indicates that POE is very effective in converting brittle PP composites into tough composites. Conversely, the tensile strength and the Young's modulus of the composites decrease with respect to the PP composites, as the weight fraction of POE is increased to 40 phr. Scanning electron microscopy (SEM) study shows a two‐phase morphology where POE, as droplets, is dispersed finely and uniformly in the PP matrix. The rheological behaviors show that the interfacial interaction in the composites is enhanced with increase in POE content. Interparticle interactions give rise to the formation of interparticle network. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
研发了一种自动固相萃取系统,用于分离地质样品中铁同位素。系统有4个并行通道,可以一次处理4个样品。对于这4个样品,一次处理过程仅需24 min。选用AG1-X8阴离子交换树脂对花岗岩样品(GBW07103)中的铁进行萃取。在萃取过程中,当盐酸浓度大于6 mol/L时,铁形成络阴离子并被吸附在AG1-X8阴离子交换树脂上,其余阳离子被洗脱出来。用浓度为8 mol/L的HNO 3和H 2O洗脱铁,铁的洗脱体积为4 mL,铁可以被定量回收,回收率达到96.0%~107%。消除了测试过程中的基体影响,提高了样品处理效率,减少了人为污染风险,是一个多元化样品处理工具。  相似文献   

11.
The mechanical properties of Mater-Bi® are, in general, not adequate for certain applications and the addition of a filler is therefore necessary. Among the different fillers, natural fibres are particularly interesting because they potentially allow improving the performance of the material without compromising its biodegradability.In order to improve the basic mechanical properties of a Mater-Bi grade and to obtain a new, fully biodegradable material, wood flour based composites were prepared by different processing methods. To simulate actual and not laboratory bacterial attack on the prepared materials, in this work we studied the biodegradation of the composites in a real active sewage sludge reactor. In particular, the biodegradation rates were investigated with reference to different pre-treatments of the materials and different environmental conditions (summer and winter). The results showed that wood flour enhances the biodegradability of the materials. The results indicated also strong relationships between the surface roughness and the biodegradation rates (in particular, higher roughness leads to wider bacterial attack). The different processing techniques had direct effects on the overall biodegradation rates. In particular, when higher smoothness and packing is achieved, the biodegradation rate is lower. The mechanical analysis indicated that adding wood flour to Mater-Bi has positive effects on the elastic modulus, but when the bacterial attack becomes critical, a general sudden drop of the mechanical properties is observed.  相似文献   

12.
The main versions of the synthesis of a new class of porous cermet materials such as Al2O3/Al, MOx/Al2O3/Al, and M1/MOx/Al2O3/Al and ceramic composites on their basis were analyzed. These ceramic composites were prepared through the stage of the hydrothermal oxidation of aluminum powder and were designed for catalytic and adsorption processes. Equations that express the dependence of the apparent density of the resulting composite on the density of the initial powder mixture, on the concentration of the powdered active component, and on the conversion of aluminum are given. It was found that the formal kinetics of aluminum oxidation with water at 100°C can be described by the Kolmogorov-Erofeev equation. The results were compared with data obtained in an autoclave at higher temperatures and steam pressures. The synthesis parameters that affect the total pore volume and the specific surface area of aluminum oxide obtained from aluminum powder were determined. For the case of the transfer of soluble components from an autoclave to a press mold, the molar coefficients of this process were calculated. The texture peculiarities of composites were analyzed. The texture exhibited a polymodal character with developed micropore, mesopore, and ultramacropore structures, which are responsible for the high permeability of granulated composites. Factors affecting the mechanical properties of metal ceramics were studied. The catalysts and products of composite materials were exemplified.  相似文献   

13.
The effect of carbon black(CB) and graphite(G) powders on the macroscopic and nano-scale free volume properties of silicone rubber based on poly(di-methylsiloxane)(PDMS) was studied through thermal and cyclic mechanical measurements, as well as with positron annihilation lifetime spectroscopy(PALS). The melting temperature of the composites(Tm) and the endothermic enthalpy of melting(?Hm) were estimated by differential scanning calorimetry(DSC). Tm and the degree of crystallinity(χc) of PDMS composites were found to decrease with increasing the CB content. This can be explained due to the increase in physical cross-linking which results in a decrease in the crystallite thickness. Besides, χc was found to be dependent on the filler type. Cyclic stress-strain behavior of PDMS loaded with different contents of filler has been studied. Mullins ratio(RM) was found to be dependent on the filler type and content. It was found that, RM increases with increasing the filler content due to the increase in physical cross-linking which results in a decrease in the size of free volume, as observed through a decrease of the o-Ps lifetime τ3 measured by PALS. Moreover, the hysteresis in PDMS-CB composites was more pronounced than in PDMS-G composites. Furthermore, a correlation was established between the free volume Vf and the mechanical properties of PDMS composites containing different fillers. A negative correlation was observed between Vf and RM.  相似文献   

14.
Polymer composites composed of poly(methyl methacrylate) (PMMA) and silica (14 nm diameter) have been investigated. The influences of sample preparation and processing have been probed. Two types of sample preparation methods were investigated: (i) solution mixture of PMMA and silica in methyl ethyl ketone and (ii) in situ synthesis of PMMA in the presence of silica. After removing all solvent or monomer, as confirmed using thermogravimetric analysis, and after compression molding, drops in Tg of 5–15 °C were observed for all composites (2–12% w/w silica) and even pure polymer reference samples. However, after additional annealing for 72 h at 140 °C, all previously observed drops in Tg disappeared, and the intrinsic Tg of bulk, pure PMMA was again observed. This is indicative of nonequilibrium trapped voids being present in the as‐molded samples. Field‐emission scanning electron microscopy was used to show well‐dispersed particles, and dynamic mechanical analysis was used to probe the mechanical properties (i.e., storage modulus) of the fully equilibrated composites. Even though no equilibrium Tg changes were observed, the addition of silica to the PMMA matrices was observed to improve the mechanical properties of the glassy polymer host. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2270–2276, 2007  相似文献   

15.
以一氧化硅和蔗糖为原料,通过高能球磨和后续热解原位制备硅/碳复合材料。采用X射线衍射仪(XRD)和高分辨透射电子显微镜(HRTEM)对其进行了表征,得到的纳米(小于50 nm)硅颗粒均匀地分散于无定形碳基体中。复合材料电极电化学测试显示,循环50次其可逆容量仍保持在650 mAh·g-1以上,平均每次容量衰减率仅为0.27%。优异的电化学性能主要归因于原位生成的纳米硅颗粒处于无定形碳基体中对其体积变化具有良好的缓冲作用及纳米硅颗粒周围的石墨相对于导电性的改善。  相似文献   

16.
分别用不同的加工温度、挤出螺杆转速、牵引速率在单螺杆挤出机中挤出PP/N6(聚丙烯/尼龙6)共混物,得到不同加工条件下的PP/N6原位成纤复合材料.对不同加工条件下得到的共混物的分散相形态、力学性能进行研究.发现螺杆转速越高、牵引速率越快、加工温度越低,分散的N6纤维尺寸越小,复合材料的力学性能越好.  相似文献   

17.
Hexakis(4-nitrophenoxy) cyclotriphosphazene (HNTP) was synthesized and was added into polycarbonate (PC) functioned as intumescent flame retardant and charring agent. The chemical structure of HNTP was confirmed by hydrogen and phosphorus nuclear magnetic resonance (1H-NMR, 31P-NMR), energy-dispersive spectroscopy and Fourier transform infrared (FTIR). Flame retardancy and charring–forming behaviors of HNTP- and PC-based composites were extensively investigated with the limiting oxygen index, UL-94 vertical burning test, microscale combustion calorimeter (MCC) and thermogravimetric analysis. The water resistance of PC-based composites was studied by stationary water contact angle measurements. Furthermore, TG/FTIR was used to research their gaseous products and their releasing intensity during the decomposition. The morphology and chemical structure of residual char were used to study scanning electron microscopy (SEM) analyses and FTIR spectroscopy. The mechanical properties of samples were compared by tensile and impact tests.  相似文献   

18.
The aim of the present study was to investigate and compare the mechanical properties of untreated and chemically modified Borassus fiber–reinforced epoxy composites. Composites were prepared by the hand lay-up process by reinforcing Borassus fibers with epoxy matrix. To improve the fiber-matrix adhesion properties, alkali (NaOH) and alkali combined with silane (3-aminopropyltriethoxysilane) treatment of the fiber surface was carried out. Examinations through Fourier transform-infrared spectroscopy and scanning electron microscopy (SEM) were conducted to investigate the structural and physical properties of the Borassus fibers. Tensile properties such as modulus and strength of the composites made with chemically modified and untreated Borassus fibers were studied using a universal testing machine. Based on the experimental results, it was found that the tensile properties of the Borassus-reinforced epoxy composites were significantly improved as compared with the neat epoxy. It was also found that the fiber treated with a combination of alkali and silane exhibited superior mechanical properties to alkali-treated and untreated fiber composites. The nature of the fiber/matrix interface was examined through SEM of cryo-fractured samples. Chemical resistance of composites was also found to be improved with chemically modified fiber composites.  相似文献   

19.
首先采用溶液共混法制备出石墨烯-碳纳米管(G-CNT)/聚氨酯(TPU)复合材料,然后通过拉伸实验及扫描电子显微镜(SEM)表征来考察该材料的拉伸强度和微波自修复特性,并从力学及材料与微波之间的相互作用等角度对其拉伸强度增强和微波修复机理进行研究.结果表明:在拉伸强度方面,与单一的石墨烯或CNT增强TPU相比,G-CNT之间形成的协同效应使TPU拉伸强度得到进一步提高,当石墨烯和CNT的质量比为3∶1时,G-CNT/TPU抗拉强度较纯TPU提高了67%,较G/TPU提高了18%,较CNT/TPU提高了25%;在材料裂纹的微波修复方面,石墨烯和CNT之间的协同效应使TPU材料自修复效果得到有效提高,当石墨烯和CNT的质量比为3∶1时,G-CNT/TPU修复效果达到最高值117%.  相似文献   

20.
A glass‐fiber, grafted by hyperbranched polymer with hydroxyl group (GF‐HBPH), reinforced epoxy‐based composite was evaluated for mechanical properties and compared with the neat epoxy and silanized glass‐fiber, GF‐APS. The epoxy/GF‐HBPH composites were studied by attenuated total internal reflectance infrared spectroscopy, 1H nuclear magnetic resonance spectroscopy, thermal gravimetric analysis, mechanical properties analysis, and field emission‐scanning electron microscopy. The results showed that the incorporation of GF‐HBPH could simultaneously enhance the mechanical properties of the epoxy composites. Field emission‐scanning electron microscopy images of the fracture surfaces of the test specimens were used to support the results and conclusions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号