首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Enantiomeric separation of chiral pharmaceuticals is carried out in aqueous and non-aqueous packed capillary electrochromatography (CEC) using a teicoplanin chiral stationary phase (CSP). Capillaries were slurry packed with 5 microm 100-A porous silica particles modified with teicoplanin and initially evaluated using a non-aqueous polar organic mode system suitability test for the separation of metoprolol enantiomers (Rs = 2.3 and 53000 plates m(-1)). A number of pharmaceutical drugs were subsequently screened with enantioselectivity obtained for 25 racemic solutes including examples of neutral, acidic and basic molecules such as coumachlor (Rs = 3.0 and 86000 plates m(-1)) and alprenolol (Rs = 3.3 and 135000 plates m(-1)) in reversed-phase and polar organic mode, respectively. A statistical experimental design was used to investigate the effects of non-aqueous polar organic mobile phase parameters on the CEC electroosmotic flow, resolution and peak efficiency for two model solutes. Results primarily indicated that higher efficiency and resolution values could be attained at higher methanol contents which is similar to findings obtained on this phase in liquid chromatography.  相似文献   

2.
Dong X  Dong J  Ou J  Zhu Y  Zou H 《Electrophoresis》2007,28(15):2606-2612
Enantiomeric separations in CEC with the macrocyclic antibiotic vancomycin immobilized silica monolith as a chiral stationary phase are presented. The monolithic silica capillary columns were prepared by a sol-gel process in fused-silica capillaries with an inner diameter of 50 mum and subsequently in situ immobilization of vancomycin as a chiral selector by reductive amination. Enantioselectivity was obtained for eight pairs of enantiomers in nonaqueous polar organic or aqueous mobile phases and most of them were baseline-separated with high column efficiencies. It was observed that the organic modifier ratio (MeOH/ACN) in the polar organic mobile phase played a significant role in controlling the resolution and efficiency of the enantiomers. In enantiomeric separation of propranolol, repeatability for column efficiency and resolution in the nonaqueous mobile phase was given in terms of RSD values at 1.1 and 2.3% (n = 5) for run-to-run injections and 7.2 and 9.6% (n = 5) for column-to-column testing while repeatability for the separation of thalidomide in the aqueous mobile phase was given in terms of RSD values at 1.5, 2.8% and 6.1, 10.5%, respectively.  相似文献   

3.
Enantiomeric separations in capillary electrochromatography (CEC) carried out using a continuous-bed chiral stationary phase (CSP) based on the macrocyclic antibiotic, vancomycin, is presented. The continuous beds were prepared from methacryloxypropyl modified fused silica capillaries (100 microm ID) by in situ copolymerization of N-(hydroxymethyl)acrylamide and piperazine diacrylamide with vinyl sulfonic acid comonomer used to introduce ionic functionality and thus a strong electroosmotic flow (EOF). The CSP was subsequently prepared by immobilizing the vancomycin stationary phase by reductive amination. Preliminary results have indicated that an extremely strong EOF is obtained in both the nonaqueous polar organic (15.2 x 10(-5) cm2 V(-1) s(-1) and the aqueous reversed-phase modes of operation (8.5 x 10(-5) cm2 V(-1) s(-1)). Enantioselectivity was obtained for four racemic compounds, the best of which was in the case of thalidomide which was separated in 10 minutes with high resolution (Rs = 2.5) and efficiency (120,000 plates meter(-1)) values.  相似文献   

4.
张凌怡  王智聪  张维冰 《色谱》2013,31(4):335-341
采用中孔SBA-15棒状硅胶颗粒填充毛细管柱用于毛细管电色谱(CEC)分离。这一亚微米材料直径为400 nm并具有沿相同方向伸展的高度有序、均一的圆柱形中孔。棒状的特殊形态使得填充柱的通透性良好,简化了尺寸微小的CEC柱的填充过程。修饰后的棒状SBA-15填充毛细管柱成功应用于反相和离子交换电色谱分离非极性和极性样品,获得了较高柱效(140000理论塔板/m)。流速3.2cm/min时获得最低理论塔板高度为7.1 mm。范迪米特曲线说明了SBA-15孔结构的传质阻力特征。分别以芳香酸、人参、天麻提取物为样品,对亚微米固定相毛细管电色谱柱加以评价。该固定相显示出了较高的分离能力,为纳米材料在色谱固定相中的应用提供了一个新的思路。  相似文献   

5.
The separation of basic compounds into their enantiomers was achieved using capillary electrochromatography in 50 or 75 microm inner diameter (ID) fused-silica capillaries packed with silica a stationary phase derivatized with vancomycin and mobile phases composed of mixtures of polar organic solvents containing 13 mM ammonium acetate. Enantiomer resolution, electroosmotic flow, and the number of theoretical plates were strongly influenced by the type and concentration of the organic solvent. Mobile phases composed of 13 mM ammonium acetate dissolved in mixtures of acetonitrile/methanol, ethanol, n-propanol, or isopropanol were tested and the highest enantioresolutions were achieved using the first mobile phase, allowing the separation of almost all investigated enantiomers (9 from 11 basic compounds). The use of capillaries with different ID (50 and 75 microm ID) packed with the same chiral stationary phase revealed that a higher number of theoretical plates and higher enantioresolution was achieved with the tube with lowest ID.  相似文献   

6.
Rapid and efficient enantioseparation of halogen aryl alcohols and β‐blockers propranolol and pindolol in packed bed CEC (p‐CEC) using as‐prepared submicron porous silica chiral stationary phases (CSPs) has been achieved. Monodispersed 0.66 and 0.81 μm chiral submicron porous silica spheres were prepared using tetramethoxysilane and hexadecyltrimethylammonium bromide, followed by a hydrothermal treatment method with ammonia–ethanol to expand the pore of silica spheres without changing their spherical morphology. A proper specific surface of ca. 230 m2/g and pore sizes average of 6–8 nm were obtained by this method. The submicron porous silica spheres were modified with mono‐6‐phenylcarbamoylated β‐CD via thiol‐en radical addition. They were packed into 9 cm 50 μm id capillary columns with photopolymerized monolithic frits. These submicron CSPs showed greater column efficiency (about 476 000 plates/m for 4‐iodophenyl‐1‐ethanol) and higher resolution than the corresponding 3 μm CSP.  相似文献   

7.
This work deals with investigations on the enantioseparation of glycyl-dipeptides by capillary electrochromatography (CEC) on a capillary packed with teicoplanin aglycone immobilized on 3.5 μm silica gel. The results were compared to those obtained with micro-HPLC using the same chiral stationary phase. Polar organic and reversed-phase mode were checked, whereby the latter showed better results. Out of 12 glycyldipetides investigated, all compounds showed baseline separation with Rs values up to 20. Plate numbers were in the range of 10 000–300 000/m. The choice of organic modifier was found to be crucial. While methanol increased retention time, acetonitrile reduced it. A ternary mixture of ethanol–acetonitrile–aqueous triethylamine acetate solution pH 4.1 was found to be a useful compromise, providing excellent resolution with retention times less than 25 min. Efficiency and resolution were generally found to be higher in CEC than with micro-HPLC.  相似文献   

8.
Reversed-phase nonporous silica (RP-NPS) of 1.5 microm dp is employed to demonstrate rapid and efficient separations in packed capillary electrochromatography (CEC). Two methods for packing capillaries and two techniques to manufacture frits used to hold the packing in place are evaluated for their effect upon separation performance using polyaromatic hydrocarbons (PAHs) and polar neutral pharmaceutical compounds. Attention is given to conditioning of the packed capillaries for high efficiency separations without necessity for sodium dodecyl sulfate (SDS). Separation conditions for the nonporous materials were modified from those previously determined on porous reversed-phase silica. Feasibility for method development and validation of a parent pharmaceutical compound and related impurities in the range of 0.1-120% of a 5 mg/mL concentration was assessed and reported. An approach to improving detection sensitivity through use of large-bore capillaries is briefly discussed.  相似文献   

9.
A procedure is described for the slurry packing of 50‐μm ID fused silica capillaries with 3‐μm octadecyl silica (ODS) particles for capillary electrochromatography (CEC) and its hyphenation with electrospray ionisation mass spectrometry (ESI/MS). A homogeneous packed bed is obtained by using a slow packing process in an upward direction with a balanced density slurry solvent and MeOH as packing solvent. Special attention was paid to the in‐ and outlet frit preparation in order to avoid gas bubble formation which renders CEC‐ESI/MS problematic. Frits were made out of the packed bed itself, sintered in water, by using a perforated heating ribbon; they were not longer than 1 mm. In CEC‐UV, column efficiencies up to 300,000 plates per meter were obtained. Absence of gas bubbles was ascertained by the straightforward coupling to ESI/MS. A make‐up flow of 3 μL/min H2O/MeOH containing 0.1% HCOOH was used in the sheath flow interface. Steroids and carbamates were analysed with a 0.1% triethylamine‐acetic acid buffer (pH 8.9) containing varying amounts of acetonitrile. In CE‐ESI/MS, efficiencies dropped by ca. 20% but spectral data were excellent.  相似文献   

10.
In this work, the simultaneous enantioseparation of the second-generation antidepressant drug mirtazapine and its main metabolites 8-hydroxymirtazapine and N-desmethylmirtazapine by chiral CEC is reported. The separation of all enantiomers under study was achieved employing a capillary column packed with a vancomycin-modified diol stationary phase. With the aim to optimize the separation of the three pairs of enantiomers in the same run, different experimental parameters were studied including the mobile phase composition (buffer concentration and pH, organic modifier type and ratio, and water content), stationary phase composition, and capillary temperature. A capillary column packed with vancomycin mixed with silica particles in the ratio (3:1) and a mobile phase composed of 100 mM ammonium acetate buffer (pH 6)/H(2)O/MeOH/ACN (5:15:30:50, by vol.) allowed the complete enantioresolution of each pair of enantiomers but not the simultaneous separation of all the studied compounds. For this purpose, a packing bed composed of vancomycin-CSP only was tested and the baseline resolution of the three couples of enantiomers was achieved in a single run in less than 30 min, setting the applied voltage and temperature at 25 kV and 20 degrees C, respectively. In order to show the potential applicability of the developed CEC method to biomedical analysis, a study concerning precision, sensitivity, and linearity was performed. The method was then applied to the separation of the enantiomers in a human urine sample spiked with the studied compounds after suitable SPE procedure with strong cation-exchange (SCX) cartridges.  相似文献   

11.
Chiral separation of basic compounds was achieved by using 75 or 100 microm ID fused-silica capillaries packed with a vanoomycin-modified diol silica stationary phase. The capillary was firstly packed for about 12 cm with a slurry mixture composed of diolsilica (3:1) then with the vancomycin modified diol-silica (3:1) (23 cm), and finally with diol-silica (3:1) for about 2 cm. Frits were prepared by a heating wire at the two ends of the capillary; the detector window was prepared at 8.5 cm from the end of the capillary where vancomycin was not present. The influence of the mobile phase composition (pH and concentration, organic modifier type and concentration) on the velocity of the electroosmotic flow, chiral resolution and enantioselectivity was studied. Good enantiomeric resolution was achieved for atenolol, oxprenolol, propranolol, and venlafaxine using a mobile phase composition of 100 mM ammonium acetate solution (pH 6)/water/acetonitrile (5:5:90 v/v/v) while for terbutaline a mixture of 5:15:80 v/v/v provided the best separations. The use of methanol instead of acetonitrile caused a general increase of enantiomer resolution of the studied compounds together with a reduction of efficiency and detector response. However, the combination of acetonitrile and methanol in the mobile phase (as, e.g., 10% methanol and 80% acetonitrile) allowed to improve the enantiomer resolution with satisfactory detector response.  相似文献   

12.
Three chiral compounds were successfully separated in a short time with two enantiomer separation models on packed-capillary electrochromatography (CEC). (i) 75 μm I.D. capillaries were packed with 5 μm β-cyclodextrin (βCD) chiral stationary phase (CSP). Effects of voltage, pH and concentration of organic modifier on electroosmotic flow (EOF) and chiral separations were investigated systematically. Enantiomers of a neutral compound (benzoin) and a neutral drug (mephenytoin) were separated within a short time with high efficiency. Efficiency of 32 000 theoretical plates per meter and resolution (R8) of 1.42 were achieved for enantiomers of benzoin using a βCD packed column with 6.2crn packed length. Efficiency of 45 000 theoretical plates per meter andR8 of 3.40 were obtained for enantiomers of mephenytoin. Especially, the enantiomer separation of mephenytion was performed in just 3.4 min with R8 of 2.60. (ii) 75 μm I.D. capillary was packed with octadecylsilica particles (ODs). Chiral separation of a basic drug, propranolol, was studied with chiral agent, via addition of the dimethyl-β-cyclodextrin (DM β-CD) directly into the mobile phase on this column. Baseline separation and efficiency of 81 000 theoretical plates per meter were achieved for propranolol. Project supported by the Natural Science Foundation of Liaoning Province, China, the National Natural Science Foundation of China (Grant No.29875030), and the Excellent Young Scientist Award from the National Natural Science Foundation of China. (Grant No.29725512).  相似文献   

13.
A test system has been established to permit the monitoring of the life-time performance of several reversed- phase capillary electrochromatography (CEC) columns. The retention factors, k(cec), peak symmetry coefficients, lambda(sym), and column efficiencies, N, of three neutral n-alkylbenzene analytes, namely ethyl-, n-butyl- and n-pentylbenzenes, were determined for Hypersil 3 microm n-octylsilica and n-octadecylsilica packed into CEC capillary columns of 100 microm I.D., with a packed length of 250 mm, and a total length of 335 mm. The performances of these CEC capillary columns were examined for a variety of eluents with pH values ranging between pH 2.0 - 8.0, similar to those employed to study the retention behaviour of peptides that we have previously reported. The relative standard deviation (RSD) of the retention factors (k(cec) values) of these n-alkylbenzenes, acquired with an eluent of (25 mM Tris-HCl, pH 8.0,)-acetonitrile (1:4, v/v), when the CEC capillary columns were used for the first time (virgin values), were 4% (based on data acquired with 4 CEC capillary columns) for the n-octyl bonded silica capillary columns, and 6% (based on 8 columns) for n-octadecyl bonded silica capillary columns. The RSD values of the k(cec) values of the n-alkylbenzenes for one set of replicates (n=6) with one CEC capillary column was < 0.5%. The theoretical plate numbers, N, for the virgin CEC capillary columns were ca. 60,000, whilst the observed N values for all new CEC capillary columns were > or = 40,000 for n-octyl bonded silica capillary columns and > or = 50,000 for n-octadecyl bonded silica capillary columns. The peak symmetry coefficients, lambda(sym), of the n-alkylbenzenes for virgin CEC capillary columns and for CEC capillary columns used for more than 1,000 injections were always in the range 0.95-1.05. The experimental results clearly document that the life-time performance of the CEC capillary columns depends on the eluent composition, as well as the nature of the analytes to which the CEC capillary columns are exposed.  相似文献   

14.
Qu Q  Lu X  Huang X  Hu X  Zhang Y  Yan C 《Electrophoresis》2006,27(20):3981-3987
Nonporous silica spheres (1 microm) were synthesized and bonded with octadecylsilane functionality. These stationary phase particles were packed electrokinetically into fused-silica capillaries with 100 microm id for a length of 20 cm, which was evaluated by using pressurized CEC (pCEC). The efficiency of the C18 RP column was characterized through the theoretical plates of thiourea, benzyl alcohol, toluene, styrene, and naphthalene. The effects of experimental parameters such as the applied voltage, sample size, pump flow rate, pH value and the concentration of the buffer solution, and the content of methanol in the mobile phase, on-column efficiency were evaluated. Column efficiency as high as 200 000 theoretical plates per meter for naphthalene was obtained with the optimal condition of 70% v/v methanol and 30% v/v of 10 mmol/L phosphate buffer (pH 7.8) at an applied voltage of 10 kV and a supplementary pressure of 500 psi.  相似文献   

15.
Summary The direct resolution of neutral amino acid and amino alcohol derivatives by pressurized capillary electrochromatography (p-CEC) is reported. Separations were performed on columns packed with multiple-interaction based chiral stationary phases (CSPs) in reversed-phase mode, using borate buffer/acetonitrile mixtures as the eluent. Two CSPs were used: 3,5-dinitrobenzoyl-(R)-phenylglycine (DNB-PGLY)- and 3,5-dinitrobenzoyl-(R)-naphthylglycine (DNB-NGLY)-silica bonded, respectively. Baseline separations of N-benzoyl--naphthylamide derivatives of phenylalanine and leucine were accomplished on DNB-PGLY-CSP in less than three minutes, and on DNB-NGLY-CSP within about 3.5 minutes, with a comparable efficiency of 160.000 plates per meter. As expected, DNB-NGLY-CSP showed higher selectivity for the compounds under study. The R-isomer eluted before the S-isomer on both CSPs. The effect of the buffer pH on the efficiency of the columns was also studied. With buffer pH over the values of 8–8.5, free residual -aminopropyl groups on the silica particles seemed do affect neither selectivity nor resolution. At these mobile phase conditions calculated efficiency against electroosmotic flow plot is consistent with that generally obtained in CEC, providing a reduced plate height of about 1.8 at a linear velocity of 0.5 mm s–1. With buffer pH values under 7.0, protonation of the free aminopropyl groups strongly affected the resolution with the result of higher retention and lower solute mass transfer.  相似文献   

16.
The solvation parameter model is used to characterize the retention properties of a 3-aminopropylsiloxane-bonded (Alltima amino), three 3-cyanopropylsiloxane-bonded (Ultrasphere CN, Ultremex-CN and Zorbax SB-CN), a spacer bonded propanediol (LiChrospher DIOL) and a multifunctional macrocyclic glycopeptide (Chirobiotic T) silica-based stationary phases with mobile phases containing 10 and 20% (v/v) methanol-water. The low retention on the polar chemically bonded stationary phases compared with alkylsiloxane-bonded silica stationary phases arises from the higher cohesion of the polar chemically bonded phases and an unfavorable phase ratio. The solvated polar chemically bonded stationary phases are considerably more hydrogen-bond acidic and dipolar/polarizable than solvated alkylsiloxane-bonded silica stationary phases. Selectivity differences are not as great among the polar chemically bonded stationary phases as they are between the polar chemically bonded phases and alkylsiloxane-bonded silica stationary phases.  相似文献   

17.
The feasibility of using capillary electrochromatography (CEC) as a high-efficiency reversed-phase separation technique has been demonstrated for the analysis of some pesticide formulation products. Some operating parameters of CEC analysis (organic modifier content, pH of the buffer, and sample diluent) were studied using commercially available capillaries packed with Hypersil (Phenomenex, Torrance, CA, U.S.A.) octadecylsilic (ODS) particles. It was found that the resolution decreases in linear fashion with the increase in percent acetonitrile in the sample diluent for neutral components if a combination of electrokinetic injection and pressure injection is used. Several practical applications of the CEC technique in the analysis of pesticide formulation products are described in detail. The results indicate that CEC, compared with HPLC, not only has higher efficiency, but is also practical, precise, and accurate in terms of simplicity, efficiency, recovery, and linearity.  相似文献   

18.
This study reports on the development and preliminary validation of a capillary electrochromatographic (CEC) method for the enantioselective impurity profiling of D-ephedrine. As chiral selector a novel low-molecular-weight strong chiral cation exchanger, based on penicillamine sulfonic acid, immobilized on thiol-modified silica particles (3.5 microm) was employed. Under optimized conditions, the ephedrine enantiomers were separated on this chiral stationary phase (CSP) with an enantioselectivity of 1.11, an average efficiency of 321 550 plates per meter, and a resolution value of 4.77. A preliminary method validation was carried out to demonstrate the applicability of CEC for enantiomeric excess (ee) determination. Run-to-run repeatabilities (n = 5) reached relative standard deviation values (RSD) of 0.18 and 0.19% for the migration times of L- and D-enantiomer, respectively, 0.3% for the resolution, and about 0.9% for the peak efficiencies. An approach called self-internal standard method was utilized to measure a standard calibration curve. Excellent linearity with a correlation coefficient of R(2) = 0.9998 was found for samples with concentrations in the range between 0.03 and 5 mg.mL(-1) D-ephedrine spiked with L-ephedrine at a constant concentration of 0.2 mg.mL(-1). The high loadability of the investigated CSP and good peak sensitivity allowed us to determine less than 0.1% enantiomeric impurity with good accuracy. The limit of detection (LOD) for the L-enantiomer in a 3 mg.mL(-1) D-ephedrine solution was found to be 0.035% (S/N = 3) and the limit of quantitation (LOQ) 0.058% (S/N = 5). For L-ephedrine samples the strong cation-exchange (SCX)-type CSP with opposite configuration was utilized so that the enantiomeric impurity eluted before the main component peak yielding similar results in terms of separation and validation. Based on these results, the presented nonaqueous CEC methods are assessed as principally suitable for ee determination of ephedrine in terms of repeatability and method sensitivity.  相似文献   

19.
A fused silica capillary column was packed with RP(18) silica stationary phase entrapping the particles between two frits obtained by two different procedures. The inlet frit consisted of a short organic polymer made via a thermopolymerization process while the outlet frit was prepared by sintering the octadecylsilica (ODS) material. The packed column was employed in capillary electrochromatography (CEC) experiments for the separation of three selected test compounds. Retention time and separation efficiency were evaluated. Results were compared with those ones obtained with a packed capillary containing the same stationary phase entrapped between two sinterized frits. The novel packed column exhibited comparable separation efficiency and resolution with the traditional one. However, it allowed experiments without pressure support during the runs with no bubble formation.  相似文献   

20.
Capillary electrochromatography (CEC) was employed for the assay of ketorolac (KT) and its known related impurities [1-hydroxy analog of ketorolac (HK), 1-keto analog of ketorolac (KK), ketorolac decarboxylated (DK)] in both drug substance and coated tablets. Detection was made at 323 nm and flufenamic acid was selected as internal standard. The experiments were performed in a 100 microm i.d. capillary packed with RP-18 silica particles (33.0, 24.5, 23.0 cm total, effective and packed lengths, respectively). The composition of the mobile phase was optimised by changing pH of the buffer and acetonitrile (ACN) content and by addition of other organic modifiers (methanol, ethanol, isopropanol, n-propanol) in order to evaluate the effect of these factors on the method performance (efficiency, retention and resolution). The optimum mobile phase consisted of a mixture of 50 mM ammonium formate buffer pH 3.5-water-acetonitrile (10:20:70, v/v/v), while voltage and temperature were set at 30 kV and 20 degrees C, respectively. Applying these conditions, all peaks were baseline resolved and the analysis was performed in less than 9 min. Selectivity, repeatability of retention time and peak area, detection and quantitation limits, linearity and range, precision and accuracy were also investigated. R.S.D. and bias values obtained for all the analytes were below 5% and sensitivity was satisfactory, thus the method was deemed suitable for pharmaceutical quality control. Applying the method to coated tablets, a recovery of 98.5+/-0.8% and an R.S.D. of 0.5% were found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号