首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The microwave spectrum of 3,4-epoxy-1-butene has been studied in the region 26.5–40 GHz. For the ground-state molecule, 170 lines have been assigned up to J = 34. From these the rotational constants and the centrifugal distortion constants were determined by least-squares fitting. The rotational constants are (in MHz): A = 17367.284 ± 0.011, B = 3138.186 ± 0.004, C = 3043.697 ± 0.004. The dipole moment has been determined from the Stark effect as (in Debye): μa = 0.72 ± 0.01, μb = 1.688 ± 0.003, μc = 0.39 ± 0.02, μ = 1.875 ± 0.005. The rotational constants and dipole moment components indicate that the assigned conformer is the s-trans form. A rotational assignment has also been made for the first excited state of the torsional mode. The fundamental frequency of the torsional mode has been estimated as 142 ± 20 cm?1 from relative intensity measurement.  相似文献   

2.
The microwave spectrum of 2-cycloheptene-1-one, an unsaturated cyclic ketone, has been studied in the regions 26.5–40 and 7.0–12.4 GHz. An analysis of the ground-state “a”-type transitions yielded the rotational constants (in MHz): A = 2997.27, B = 2049.24, C = 1399.76. The “a”-type transitions of an excited vibrational state were also assigned, giving A = 3000.51, B = 2046.65, C = 1398.88. The centrifugal distortion constants, DJ and DJK, were needed to fit the data adequately. A study of the Stark effect yielded the dipole moment components (in debye) μa = 3.63 ± 0.023 and μc = 0.882 ± 0.040. The μb component could not be determined from the Stark effect data. These data are used to discuss the molecular conformation of cycloheptene-1-one.  相似文献   

3.
Measurements are reported for the rotational spectrum of the C4v molecule IOF5 in the ground vibrational state in the range 30–75 GHz (J7 ← 6 to J17 ← 16). The K-doubling of |k| = 2 transitions due to an off-diagonal centrifugal distortion interaction of the type (Δl, Δk) = (0, ±4) has been observed. The centrifugal distortion constants DJ, DJK, and R6 have been determined as 0.139(2) kHz, 0.107(4) kHz, and 21(2) Hz, respectively.  相似文献   

4.
The rotational spectrum of 3-methylcyclopentanone has been observed in the frequency region from 18.0 to 26.5 GHz. Both a-type and b-type transitions in the ground vibrational state and a-type transitions in five excited states have been assigned. The ground state rotational constants are determined to be A = 5423.32 ± 0.18, B = 1949.51 ± 0.01, and C = 1529.59 ± 0.01 MHz. Analysis of the measured quadratic Stark effects gives the dipole moment components ∥μa∥ = 2.97 ± 0.02, ∥μb∥ = 1.00 ± 0.03, ∥μc∥ = 0.18 ± 0.06, and the total dipole moment ∥μt∥ = 3.14 ± 0.03 D. These data are consistent with a twisted-ring conformation with a methyl group in the equatorial position.  相似文献   

5.
Measurements of rotational transitions of 1-butyne have been made in the range of ~20–130 GHz. Both a-type transitions up to J = 46 and b-type transitions up to J = 42 have been measured and fitted to a rotational Hamiltonian which includes centrifugal distortion terms. In addition to the five quartic centrifugal distortion constants, three sextic coefficients had to be included to reproduce the observed frequencies to within experimental error. The results of the analysis are sufficient for the prediction of all strong transitions throughout the millimeterwave range. A barrier to internal rotation of the methyl group of 3.260 kcal/mole (1 kcal/mole = 4.18 kJ/mole) has been derived from the first excited torsional state. Analysis of the second-order Stark effect has led to an accurate determination of both μa and μb with μa = 0.763(3) D and μb = 0.170(4) D.  相似文献   

6.
The microwave spectrum of HNO has been observed and analyzed. Both a-type and b-type transitions have been measured. The rotational constants obtained are A = 553903.0 ± 2.7 MHz, B = 42308.52 ± 0.10 MHz, and C = 39169.46 ± 0.10 MHz. In the analysis of the spectrum, centrifugal distortion corrections are tentatively taken into account by using the centrifugal distortion constants determined by Dalby. The quadrupole coupling constants for nitrogen in HNO are determined to be χaa = 0.36 ± 0.56 MHz, χbb = ? 5.46 ± 0.30 MHz, and χcc = 5.10 ± 0.26 MHz. The dipole moment and its components determined from the Stark effect measurement are μtotal = 1.67 ± 0.03 D, μa = 1.03 ± 0.01 D, and μb = 1.31 ± 0.02 D. The microwave spectrum of DNO has been reanalyzed by taking into account the centrifugal distortion effect. The inertia defects for HNO and DNO have been calculated. The results are limited in precision by the lack of reliable force constants.  相似文献   

7.
Infrared microwave double resonance signals have been observed for CH3OH using the 3.5-μm HeXe laser line. When microwave transitions in the ground vibrational state are pumped, the double resonance signals are obtained on two infrared transitions v = 1 ← 0 of νCH(a′); v = 1, J, K, μ = 4, 2, 1 ← v = 0, J, K, μ = 3, 2, 1, and 4, 3, 1 ← 3, 3, 1. Three weak double resonance signals are due to the collision-induced transitions. Their relative intensities have been explained successfully by using the rate constants of collision-induced transitions which are proportional to the dipole matrix elements between the states involved in the transitions.  相似文献   

8.
The microwave spectrum of oxiranecarboxaldehyde (glycidaldehyde) has been studied in the 8–40 GHz region. Transitions in the ground and first seven excited states of the torsional motion of the aldehyde group have been assigned for the species with the oxygen atom of the aldehyde group trans to the oxirane ring. The v = 0 to v = 1 torsional excitation energy is estimated to be 140 ± 10 cm?1. The population of any other torsional conformer is less than 5% of the trans species at 200 K. Structural parameters were derived from rotational constants of the three singly substituted 13C species, whose spectra were observed in natural abundance. Substitution parameters are rCC(ring) = 1.453 ±0.025 A?, rCC(ald.) = 1.469 ± 0.010 A?, ∠CCC = 119.8 ± 2.0°. The dipole moments determined by means of the Stark effect are μa = 1.932 ± 0.005 D, μb = 1.511 ± 0.017 D, and μc = 0.277 ± 0.156 D, with μt = 2.469 ± 0.031 D.  相似文献   

9.
Microwave spectra have been studied in the ground and v5 = 1 (CC stretching mode) states of methylacetylene. From these data, dipole moments and rotational and centrifugal distortion constants have been determined, as follows: μD(0) = 0.7839 ± 0.0010 D, μD(5) = 0.7954 ± 0.0010 D, B5 = 8508.119 ± 0.003 MHz, DJ(5) = 1.8 ± 0.2 kHz, and DJK(5) = 169 ± 1 kHz. Laser Stark spectra have been obtained for the ν5 band of this molecule and from these spectra the following vibration-rotation parameters have been determined: ν50 = 93.27540 ± 0.00007 cm?1, A5 - A0 = ?227.0 ± 2.3 MHz and DK(5) - DK(0) = ?0.05 ± 0.50 MHz. The higher-J and -K states of the v5 = 1 state appear to be purturbed.  相似文献   

10.
Weak transitions of the type ΔJ = ± 1, ΔKa = ? 2, ΔKc = ± 3 have been observed in H2CO and D2CO by the millimeterwave double resonance method and also by direct absorption with a Stark modulated spectrometer. The addition of these new transitions in a least-squares analysis, in which all previously known microwave and millimeterwave data are also included, results in an improved set of rotational and distortion constants.  相似文献   

11.
The Fourier transform gas-phase infrared spectra of the v 10 and v 11 bands of natural CH2=CHCl have been measured with a resolution of 0.005 cm?1 in the frequency range 820–1010 cm?1. These vibrations of symmetry species A″ give rise to c-type bands and the transitions observed are characterized by δK a = ±1 and δK c = 0, ±2. Both J and K structures have been resolved in different subbranches and about 1800 (J ≤ 64, K a ≤ 13) and 2800 (J ≤ 72, K a ≤ 14) transitions for the v 10 and v 11 fundamentals, respectively, have been identified for the 35Cl isotopomer. Combined analysis of the assigned data with the available ground state constants allowed the determination of the band origins, rotational and centrifugal distortion parameters for the v 10 = 1 and v 11 = 1 excited states of CH2=CH35Cl isotopic species. The molecular constants obtained account for slight perturbations in the v 10 vibrational level.  相似文献   

12.
The microwave spectra of tertiarybutylphosphine (CH3)3CPH2, (CH3)3CPHD, and (CH3)3CPD2 have been recorded in the region 26.5–40.3 GHz. Both a- and c-type transitions were observed and assigned for the “light” and “heavy” molecules and a-type transitions were observed and assigned for the d1 species. The rigid rotor rotational constants were determined to be A = 4397.63 ± 0.04, B = 2878.88 ± 0.02, and C = 2870.86 ± 0.02 MHz for (CH3)3CPH2 and A= 4261.98 ± 0.04, B = 2769.82 ± 0.02, and C = 2752.71 ± 0.02 MHz for (CH3)3CPD2 and A = 4330 ± 2, B = 2831.45 ± 0.02, and C = 2801.50 ± 0.02 MHz for (CH3)3CPHD. Dipole moment components of |μa| = 1.06 ± 0.02, |μc| = 0.49 ± 0.02 and |μt| = 1.17 ± 0.02D were determined from the Stark effect. By assuming reasonable structural parameters for the tertiarybutyl and phosphine groups, a least-squares fit of the rotational constants gave λP-C = 1.896 A? and ?CPH = 95.7°. No splitting was observed of the first excited state of the phosphine torsional mode.  相似文献   

13.
Microwave spectra of the anti rotamer of vinyl mercaptan and its SD isotopic species have been studied in the frequency range 12–60 GHz. For the normal species rotational and centrifugal distortion constants have been obtained for the ground and first three excited states of the SH torsional mode, the ground state values being A = 49 422.75(5) MHz, B = 5 897.215(9) MHz, C = 5 279.436(9) MHz, DJ = 3.12(11) kHz, DJK = ?38.50(1.71) kHz, and δJ = 0.498(51) kHz. An approximate potential function for the SH torsion in the vicinity of the anti conformation, derived using the observed variation of rotational constants with vibrational quantum number, reveals the presence of a small potential barrier of 19 cm?1 at the planar conformation. The v = 0 state lies above this barrier so the molecule is essentially planar in the ground state in spite of the observed negative value for the inertia defect (?0.1976(2) a.m.u.Å2). The anti rotamer is found to be 50 ± 25 cm?1 less stable than the syn rotamer. The dipole moment has the ground state values μa = 0.425(10), μb = 1.033(10), and μtotal = 1.117(14) D and is shown to vary considerably with vibrational quantum number. Evidence for significant structural changes in going from the syn rotamer to the anti rotamer is also presented.  相似文献   

14.
The microwave spectrum of tetrahydropyran-4-one has been studied in the frequency region 18 to 40 GHz. The rotational constants for the ground state and nine vibrationally excited states have been derived by fitting a-type R-branch transitions. The rotational constants for the ground state are (in MHz) A = 4566.882 ± 0.033, B = 2538.316 ± 0.003, C = 1805.878 ± 0.004. From information obtained from the gas-phase far-infrared spectrum and relative intensity measurements, these excited states are estimated to be ~ 100 cm?1 above the ground state for the first excited state of the ring-bending and ~ 185 cm?1 for the first excited state of the ring-twisting mode. Stark displacement measurements were made for several transitions and the dipole moment components determined by least-squares fitting of the displacements: (in Debye) |μa| = 1.693 (0.001), |μb| = 0.0, |μc| = 0.300 (0.013) yielding a total dipole moment μtot = 1.720 (0.003). A model calculation to reproduce the rotational parameters indicates that the data are consistent with the chair conformation.  相似文献   

15.
The far-infrared torsional spectrum of ClONO2 (chlorine nitrate) was reexamined at 0.06-cm?1 apodized resolution. The torsional spectrum consists of a single, regularly spaced series of Q branches at 122.56 ? 2.422 v′ + 0.0296 v2 cm?1. Chlorine nitrate is planar with torsional potential constants V2 = 1900 ± 100 cm?1 and V4 = 90 ± 50 cm?1. The torsional partition function is calculated at room and stratospheric temperatures.  相似文献   

16.
The microwave spectra of isopropylphosphine has been recorded in the region 12.4–40.0 GHz. Both a- and b-type transitions were observed and assigned. The rigid rotor rotational constants were determined to be A = 7633.34 ± 0.09, B = 4243.36 ± 0.02, and C = 3045.84 ± 0.02 MHz for (CH3)2CHPH2 and A = 7226.47 ± 0.05, B = 4041.06 ± 0.02, and C = 2946.85 ± 0.02 MHz for (CH3)2CHPD2. Dipole moment components of |μa| = 1.15 ± 0.01, |μb| = 0.43 ± 0.01, |μc| = 0.03 ± 0.02 and |μt| = 1.23 ± 0.01 were determined from the Stark effect. From the microwave spectra, the Stark effect and the experimental rotational constants, the assigned spectrum has been identified to result from the gauche form and this conformer is believed to be more stable than the other form which is present at room temperature.  相似文献   

17.
The molecular rotational spectrum of 3-butynenitrile (3BN, propargyl cyanide), HCCCH2CN, has been investigated in the vibrational ground state. A total of 222 transitions up to J = 69 have been measured between 8 and 300 GHz. The Hamiltonian used for the spectral analysis was required to include all centrifugal terms of fourth and sixth orders and one term of eighth order in the angular momentum components in order to reproduce the transition frequencies within the experimental error. Significant values for the respective distortion coefficients could be determined. The molecular dipole moment components were calculated from measured Stark effect shifts as |μa| = (3.23 ± 0.05) D, |μb| = (2.34 ± 0.02) D; μtot = (3.99 ± 0.05) D.  相似文献   

18.
The microwave spectrum of 3-methoxypropionitrile, CH3OCH2CH2CN, has been investigated in the region 16 to 40 GHz. The spectrum reveals the presence of only one rotational isomer, the fully-trans form (with C8 symmetry). For the ground vibrational state the rotational constants are A = 17 821 ± 14, B = 1425.526 ± 0.005, and C = 1353.909 ± 0.005MHz and the centrifugal distortion constants are DJ = 0.162 ± 0.010 and DJK = ?10.28 ± 0.03kHz. Several series of vibrational satellite lines have been assigned to the torsional motions about the CH2CH2 and CH2O bonds and to the CC≡N bending motion.  相似文献   

19.
The microwave and millimeter wave spectrum of 12CH318OH has been observed in the frequency region 7.9–200 GHz. Both a- and b-type transitions have been assigned and measured. This spectrum was analyzed using the method of Lees and Baker, and rotational constants, torsional constants, centrifugal distortion constants, the barrier to internal rotation and moments of inertia have been evaluated. The barrier has been found to be 374.91 ± 0.18 cm?1, in good agreement with that of 12CH316OH. The moments of inertia were combined with those of other isotopic species to give a full substitution structure. To assist searches for this molecule in interstellar space a table of predicted frequencies of astrophysically interesting transitions is presented.  相似文献   

20.
Frequency measurements and assignments have been made for CH3OH lines in the 15- to 400-GHz region. The a-type R-branch multiplets are reported up to J = 8 ← 7 for the vt=0 torsional ground state, and to J = 6 ← 5 for the vt=1 and vt=2 excited states. Several new Q branches are listed and many b-type P- and R-branch transitions have been identified over a wide range of J and k values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号