首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Let q be a power of a prime p, and let \(r=nk+1\) be a prime such that \(r\not \mid q\), where n and k are positive integers. Under a simple condition on q, r and k, a Gauss period of type (nk) is a normal element of \({\mathbb {F}}_{q}^{n}\) over \({\mathbb {F}}_q\); the complexity of the resulting normal basis of \({\mathbb {F}}_{q}^{n}\) over \({\mathbb {F}}_q\) is denoted by C(nkp). Recent works determined C(nkp) for \(k\le 7\) and all qualified n and q. In this paper, we show that for any given \(k>0\), C(nkp) is given by an explicit formula except for finitely many primes \(r=nk+1\) and the exceptional primes are easily determined. Moreover, we describe an algorithm that allows one to compute C(nkp) for the exceptional primes \(r=nk+1\). Our numerical results cover C(nkp) for \(k\le 20\) and all qualified n and q.  相似文献   

2.
We show that every (possibly unbounded) convex polygon P in \({\mathbb{R}^2}\) with m edges can be represented by inequalities p 1 ≥ 0, . . ., p n ≥ 0, where the p i ’s are products of at most k affine functions each vanishing on an edge of P and n = n(m, k) satisfies \({s(m, k) \leq n(m, k) \leq (1+\varepsilon_m) s(m, k)}\) with s(m,k) ? max {m/k, log2 m} and \({\varepsilon_m \rightarrow 0}\) as \({m \rightarrow \infty}\). This choice of n is asymptotically best possible. An analogous result on representing the interior of P in the form p 1 > 0, . . ., p n >  0 is also given. For km/log2 m these statements remain valid for representations with arbitrary polynomials of degree not exceeding k.  相似文献   

3.
In this paper, we show that the truncated binomial polynomials defined by \(P_{n,k}(x)={\sum }_{j=0}^{k} {n \choose j} x^{j}\) are irreducible for each k≤6 and every nk+2. Under the same assumption nk+2, we also show that the polynomial P n,k cannot be expressed as a composition P n,k (x) = g(h(x)) with \(g \in \mathbb {Q}[x]\) of degree at least 2 and a quadratic polynomial \(h \in \mathbb {Q}[x]\). Finally, we show that for k≥2 and m,nk+1 the roots of the polynomial P m,k cannot be obtained from the roots of P n,k , where mn, by a linear map.  相似文献   

4.
Batch codes, first introduced by Ishai, Kushilevitz, Ostrovsky, and Sahai, mimic a distributed storage of a set of n data items on m servers, in such a way that any batch of k data items can be retrieved by reading at most some t symbols from each server. Combinatorial batch codes, are replication-based batch codes in which each server stores a subset of the data items. In this paper, we propose a generalization of combinatorial batch codes, called multiset combinatorial batch codes (MCBC), in which n data items are stored in m servers, such that any multiset request of k items, where any item is requested at most r times, can be retrieved by reading at most t items from each server. The setup of this new family of codes is motivated by recent work on codes which enable high availability and parallel reads in distributed storage systems. The main problem under this paradigm is to minimize the number of items stored in the servers, given the values of nmkrt, which is denoted by N(nkmtr). We first give a necessary and sufficient condition for the existence of MCBCs. Then, we present several bounds on N(nkmtr) and constructions of MCBCs. In particular, we determine the value of N(nkm, 1; r) for any \(n\ge \left\lfloor \frac{k-1}{r}\right\rfloor {m\atopwithdelims ()k-1}-(m-k+1)A(m,4,k-2)\), where \(A(m,4,k-2)\) is the maximum size of a binary constant weight code of length m, distance four and weight \(k-2\). We also determine the exact value of N(nkm, 1; r) when \(r\in \{k,k-1\}\) or \(k=m\).  相似文献   

5.
A k-factor of a graph G is a k-regular spanning subgraph of G. A k-factorization is a partition of E(G) into k-factors. Let K(np) be the complete multipartite graph with p parts, each of size n. If \(V_{1},\ldots , V_{p}\) are the p parts of V(K(np)), then a holey k -factor of deficiency \(V_{i}\) of K(np) is a k-factor of \(K(n,p)-V_{i}\) for some i satisfying \(1\le i \le p\). Hence a holey k -factorization is a set of holey k-factors whose edges partition E(K(np)). Representing each (holey) k-factor as a color class in an edge-coloring, a (holey) k-factorization of K(np) is said to be fair if between each pair of parts the color classes have size within one of each other (so the edges are shared “evenly” among the permitted (holey) factors). In this paper the existence of fair 1-factorizations of K(np) is completely settled, as is the existence of fair holey 1-factorizations of K(np). The latter result can be used to provide a new construction for symmetric quasigroups of order np with holes of size n. Such quasigroups have the additional property that the permitted symbols are shared as evenly as possible among the cells in each \(n \times n\) “box”. These quasigroups are in some sense as far from frames produced by direct products as possible.  相似文献   

6.
For a simple graph G on n vertices and an integer k with 1 ? k ? n, denote by \(\mathcal{S}^+_k\) (G) the sum of k largest signless Laplacian eigenvalues of G. It was conjectured that \(\mathcal{S}^+_k(G)\leqslant{e}(G)+(^{k+1}_{\;\;2})\) (G) ? e(G) + (k+1 2), where e(G) is the number of edges of G. This conjecture has been proved to be true for all graphs when k ∈ {1, 2, n ? 1, n}, and for trees, unicyclic graphs, bicyclic graphs and regular graphs (for all k). In this note, this conjecture is proved to be true for all graphs when k = n ? 2, and for some new classes of graphs.  相似文献   

7.
Define a k-minimum-difference-representation (k-MDR) of a graph G to be a family of sets \({\{S(v): v\in V(G)\}}\) such that u and v are adjacent in G if and only if min{|S(u)?S(v)|, |S(v)?S(u)|} ≥ k. Define ρ min(G) to be the smallest k for which G has a k-MDR. In this note, we show that {ρ min(G)} is unbounded. In particular, we prove that for every k there is an n 0 such that for n > n 0 ‘almost all’ graphs of order n satisfy ρ min(G) > k. As our main tool, we prove a Ramsey-type result on traces of hypergraphs.  相似文献   

8.
A cyclic sequence of elements of [n] is an (nk)-Ucycle packing (respectively, (nk)-Ucycle covering) if every k-subset of [n] appears in this sequence at most once (resp. at least once) as a subsequence of consecutive terms. Let \(p_{n,k}\) be the length of a longest (nk)-Ucycle packing and \(c_{n,k}\) the length of a shortest (nk)-Ucycle covering. We show that, for a fixed \(k,p_{n,k}={n\atopwithdelims ()k}-O(n^{\lfloor k/2\rfloor })\). Moreover, when k is not fixed, we prove that if \(k=k(n)\le n^{\alpha }\), where \(0<\alpha <1/3\), then \(p_{n,k}={n\atopwithdelims ()k}-o({n\atopwithdelims ()k}^\beta )\) and \(c_{n,k}={n\atopwithdelims ()k}+o({n\atopwithdelims ()k}^\beta )\), for some \(\beta <1\). Finally, we show that if \(k=o(n)\), then \(p_{n,k}={n\atopwithdelims ()k}(1-o(1))\).  相似文献   

9.
We consider higher-dimensional generalizations of the normalized Laplacian and the adjacency matrix of graphs and study their eigenvalues for the Linial–Meshulam model Xk(n, p) of random k-dimensional simplicial complexes on n vertices. We show that for p = Ω(logn/n), the eigenvalues of each of the matrices are a.a.s. concentrated around two values. The main tool, which goes back to the work of Garland, are arguments that relate the eigenvalues of these matrices to those of graphs that arise as links of (k - 2)-dimensional faces. Garland’s result concerns the Laplacian; we develop an analogous result for the adjacency matrix.  相似文献   

10.
Let H be a connected graph and G be a supergraph of H. It is trivial that for any k-flow (Df) of G, the restriction of (Df) on the edge subset E(G / H) is a k-flow of the contracted graph G / H. However, the other direction of the question is neither trivial nor straightforward at all: for any k-flow \((D',f')\) of the contracted graph G / H, whether or not the supergraph G admits a k-flow (Df) that is consistent with \((D',f')\) in the edge subset E(G / H). In this paper, we will investigate contractible configurations and their extendability for integer flows, group flows, and modulo orientations. We show that no integer flow contractible graphs are extension consistent while some group flow contractible graphs are also extension consistent. We also show that every modulo \((2k+1)\)-orientation contractible configuration is also extension consistent and there are no modulo (2k)-orientation contractible graphs.  相似文献   

11.
We derive a combinatorial multisum expression for the number D(n, k) of partitions of n with Durfee square of order k. An immediate corollary is therefore a combinatorial formula for p(n), the number of partitions of n. We then study D(n, k) as a quasipolynomial. We consider the natural polynomial approximation \({\tilde{D}(n, k)}\) to the quasipolynomial representation of D(n, k). Numerically, the sum \({\sum_{1\leq k \leq \sqrt{n}} \tilde{D}(n, k)}\) appears to be extremely close to the initial term of the Hardy-Ramanujan-Rademacher convergent series for p(n).  相似文献   

12.
Estimates of sums \({R_{nk}}\left( x \right) = \sum\limits_{m = n}^\infty {{P_{mk}}\left( x \right)} \) are established. Here, Pn0(x)= Pn(x), \({R_{nk}}\left( x \right) = \int\limits_.^x {{P_{n,k - 1}}\left( y \right)dy} \), Pn is the Legendre polynomial with standard normalization Pn(1) = 1. With k = 1 in the main interval [–1, 1] the sum decreases with increasing n as n–1, and in the half-open interval [–1, 1), as n–3/2. With k > 1 the point x = 1 does not need to be excluded. The sum decreases as n-k–1/2. Moreover, a small increase in the multiplicative constant permits to obtain the estimate \(|{R_{nk}}\left( {\cos \theta } \right)| < \frac{{C{{\sin }^{k - 3/2}}\theta }}{{{n^{k + 1/2}}}}\), where C depends weakly on k (but not on n, θ). In passing, a Mehler–Dirichlet-type integral for Rnk(cos θ) is deduced.  相似文献   

13.
The Kneser graph K(nk) is the graph whose vertices are the k-element subsets of an n elements set, with two vertices adjacent if they are disjoint. The square \(G^2\) of a graph G is the graph defined on V(G) such that two vertices u and v are adjacent in \(G^2\) if the distance between u and v in G is at most 2. Determining the chromatic number of the square of the Kneser graph K(nk) is an interesting graph coloring problem, and is also related with intersecting family problem. The square of K(2kk) is a perfect matching and the square of K(nk) is the complete graph when \(n \ge 3k-1\). Hence coloring of the square of \(K(2k +1, k)\) has been studied as the first nontrivial case. In this paper, we focus on the question of determining \(\chi (K^2(2k+r,k))\) for \(r \ge 2\). Recently, Kim and Park (Discrete Math 315:69–74, 2014) showed that \(\chi (K^2(2k+1,k)) \le 2k+2\) if \( 2k +1 = 2^t -1\) for some positive integer t. In this paper, we generalize the result by showing that for any integer r with \(1 \le r \le k -2\),
  1. (a)
    \(\chi (K^2 (2k+r, k)) \le (2k+r)^r\),   if   \(2k + r = 2^t\) for some integer t, and
     
  2. (b)
    \(\chi (K^2 (2k+r, k)) \le (2k+r+1)^r\),   if  \(2k + r = 2^t-1\) for some integer t.
     
On the other hand, it was shown in Kim and Park (Discrete Math 315:69–74, 2014) that \(\chi (K^2 (2k+r, k)) \le (r+2)(3k + \frac{3r+3}{2})^r\) for \(2 \le r \le k-2\). We improve these bounds by showing that for any integer r with \(2 \le r \le k -2\), we have \(\chi (K^2 (2k+r, k)) \le 2 \left( \frac{9}{4}k + \frac{9(r+3)}{8} \right) ^r\). Our approach is also related with injective coloring and coloring of Johnson graph.
  相似文献   

14.
Let R k,s(n) denote the number of solutions of the equation \({n= x^2 + y_1^k + y_2^k + \cdots + y_s^k}\) in natural numbers x, y 1, . . . , y s . By a straightforward application of the circle method, an asymptotic formula for R k,s(n) is obtained when k ≥ 3 and s ≥ 2k–1 + 2. When k ≥ 6, work of Heath-Brown and Boklan is applied to establish the asymptotic formula under the milder constraint s ≥ 7 · 2k–4 + 3. Although the principal conclusions provided by Heath-Brown and Boklan are not available for smaller values of k, some of the underlying ideas are still applicable for k = 5, and the main objective of this article is to establish an asymptotic formula for R 5,17(n) by this strategy.  相似文献   

15.
Let ?: E(G) → {1, 2, · · ·, k} be an edge coloring of a graph G. A proper edge-k-coloring of G is called neighbor sum distinguishing if \(\sum\limits_{e \mathrel\backepsilon u} {\phi \left( e \right)} \ne \sum\limits_{e \mathrel\backepsilon v} {\phi \left( e \right)} \) for each edge uvE(G). The smallest value k for which G has such a coloring is denoted by χΣ(G), which makes sense for graphs containing no isolated edge (we call such graphs normal). It was conjectured by Flandrin et al. that χΣ(G) ≤ Δ(G) + 2 for all normal graphs, except for C5. Let mad(G) = \(\max \left\{ {\frac{{2\left| {E\left( h \right)} \right|}}{{\left| {V\left( H \right)} \right|}}|H \subseteq G} \right\}\) be the maximum average degree of G. In this paper, we prove that if G is a normal graph with Δ(G) ≥ 5 and mad(G) < 3 ? \(\frac{2}{{\Delta \left( G \right)}}\), then χΣ(G) ≤ Δ(G) + 1. This improves the previous results and the bound Δ(G) + 1 is sharp.  相似文献   

16.
Let \({A=-(\nabla-i{\vec a})\cdot (\nabla-i{\vec a}) +V}\) be a magnetic Schrödinger operator acting on \({L^2({\mathbb R}^n)}\), n ≥  1, where \({{\vec a}=(a_1, \ldots, a_n)\in L^2_{\rm loc}({\mathbb R}^n, {\mathbb R}^n)}\) and \({0\leq V\in L^1_{\rm loc}({\mathbb R}^n)}\). In this paper, we show that when a function \({b\in {\rm BMO}({\mathbb R}^n)}\), the commutators [b, T k ]f = T k (b f) ? b T k f, k = 1, . . . , n, are bounded on \({L^p({\mathbb R}^n)}\) for all 1 < p < 2, where the operators T k are Riesz transforms (?/?x k  ? i a k )A ?1/2 associated with A.  相似文献   

17.
A well-known result of Kupitz from 1982 asserts that the maximal number of edges in a convex geometric graph (CGG) on n vertices that does not contain \(k+1\) pairwise disjoint edges is kn (provided \(n>2k\)). For \(k=1\) and \(k=n/2-1\), the extremal examples are completely characterized. For all other values of k, the structure of the extremal examples is far from known: their total number is unknown, and only a few classes of examples were presented, that are almost symmetric, consisting roughly of the kn “longest possible” edges of CK(n), the complete CGG of order n. In order to understand further the structure of the extremal examples, we present a class of extremal examples that lie at the other end of the spectrum. Namely, we break the symmetry by requiring that, in addition, the graph admit an independent set that consists of q consecutive vertices on the boundary of the convex hull. We show that such graphs exist as long as \(q \le n-2k\) and that this value of q is optimal. We generalize our discussion to the following question: what is the maximal possible number f(nkq) of edges in a CGG on n vertices that does not contain \(k+1\) pairwise disjoint edges, and, in addition, admits an independent set that consists of q consecutive vertices on the boundary of the convex hull? We provide a complete answer to this question, determining f(nkq) for all relevant values of nk and q.  相似文献   

18.
For a finite non cyclic group G, let γ(G) be the smallest integer k such that G contains k proper subgroups H 1, . . . , H k with the property that every element of G is contained in \({H_i^g}\) for some \({i \in \{1,\dots,k\}}\) and \({g \in G.}\) We prove that for every n ≥ 2, there exists a finite solvable group G with γ(G) = n.  相似文献   

19.
For any two positive integers n and k ? 2, let G(n, k) be a digraph whose set of vertices is {0, 1, …, n ? 1} and such that there is a directed edge from a vertex a to a vertex b if a k b (mod n). Let \(n = \prod\nolimits_{i = 1}^r {p_i^{{e_i}}} \) be the prime factorization of n. Let P be the set of all primes dividing n and let P 1, P 2 ? P be such that P 1P 2 = P and P 1P 2 = ?. A fundamental constituent of G(n, k), denoted by \(G_{{P_2}}^*(n,k)\), is a subdigraph of G(n, k) induced on the set of vertices which are multiples of \(\prod\nolimits_{{p_i} \in {P_2}} {{p_i}} \) and are relatively prime to all primes qP 1. L. Somer and M. K?i?ek proved that the trees attached to all cycle vertices in the same fundamental constituent of G(n, k) are isomorphic. In this paper, we characterize all digraphs G(n, k) such that the trees attached to all cycle vertices in different fundamental constituents of G(n, k) are isomorphic. We also provide a necessary and sufficient condition on G(n, k) such that the trees attached to all cycle vertices in G(n, k) are isomorphic.  相似文献   

20.
Let M(nd) be the maximum size of a permutation array on n symbols with pairwise Hamming distance at least d. We use various combinatorial, algebraic, and computational methods to improve lower bounds for M(nd). We compute the Hamming distances of affine semilinear groups and projective semilinear groups, and unions of cosets of AGL(1, q) and PGL(2, q) with Frobenius maps to obtain new, improved lower bounds for M(nd). We give new randomized algorithms. We give better lower bounds for M(nd) also using new theorems concerning the contraction operation. For example, we prove a quadratic lower bound for \(M(n,n-2)\) for all \(n\equiv 2 \pmod 3\) such that \(n+1\) is a prime power.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号