首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we are concerned with the family \(\widetilde{S}^t_A(\mathbb {B}^n)\) (\(t\ge 0\)) of normalized biholomorphic mappings on the Euclidean unit ball \(\mathbb {B}^n\) in \({\mathbb {C}}^n\) that can be embedded in normal Loewner chains whose normalizations are given by time-dependent operators \(A\in \widetilde{\mathcal {A}}\), where \(\widetilde{\mathcal {A}}\) is a family of measurable mappings from \([0,\infty )\) into \(L({\mathbb {C}}^n)\) which satisfy certain natural assumptions. In particular, we consider extreme points and support points associated with the compact family \(\widetilde{S}^t_A(\mathbb {B}^n)\), where \(A\in \widetilde{\mathcal {A}}\). We prove that if \(f(z,t)=V(t)^{-1}z+\cdots \) is a normal Loewner chain such that \(V(s)f(\cdot ,s)\in \mathrm{ex}\,\widetilde{S}^s_A(\mathbb {B}^n)\) (resp. \(V(s)f(\cdot ,s)\in \mathrm{supp}\,\widetilde{S}^s_A(\mathbb {B}^n)\)), then \(V(t)f(\cdot ,t)\in \mathrm{ex}\, \widetilde{S}^t_A(\mathbb {B}^n)\), for all \(t\ge s\) (resp. \(V(t)f(\cdot ,t)\in \mathrm{supp}\,\widetilde{S}^t_A(\mathbb {B}^n)\), for all \(t\ge s\)), where V(t) is the unique solution on \([0,\infty )\) of the initial value problem: \(\frac{d V}{d t}(t)=-A(t)V(t)\), a.e. \(t\ge 0\), \(V(0)=I_n\). Also, we obtain an example of a bounded support point for the family \(\widetilde{S}_A^t(\mathbb {B}^2)\), where \(A\in \widetilde{\mathcal {A}}\) is a certain time-dependent operator. We also consider the notion of a reachable family with respect to time-dependent linear operators \(A\in \widetilde{\mathcal {A}}\), and obtain characterizations of extreme/support points associated with these families of bounded biholomorphic mappings on \(\mathbb {B}^n\). Useful examples and applications yield that the study of the family \(\widetilde{S}^t_A(\mathbb {B}^n)\) for time-dependent operators \(A\in \widetilde{\mathcal {A}}\) is basically different from that in the case of constant time-dependent linear operators.  相似文献   

2.
Graham, Hamada, Kohr and Kohr studied the normalized time \(T\) reachable families \(\widetilde{\mathcal {R}}_T(id_{{\mathbb {B}}^n},\Omega )\) of the Loewner differential equation, which are generated by the Carathéodory mappings with values in a subfamily \(\Omega \) of the Carathéodory family \({\mathcal {N}}_A\) for the Euclidean unit ball \({\mathbb {B}}^n\), where \(A\) is a linear operator with \(k_+(A)<2m(A)\) (\(k_+(A)\) is the Lyapunov index of \(A\) and \(m(A)=\min \{\mathfrak {R}\left\langle Az,z\right\rangle \big |z\in {\mathbb {C}}^n,\Vert z\Vert =1\}\)). They obtained some compactness and density results, as generalizations of related results due to Roth, and conjectured that if \(\Omega \) is compact and convex, then \(\widetilde{\mathcal {R}}_T(id_{{\mathbb {B}}^n},\Omega )\) is compact and \(\widetilde{\mathcal {R}}_T(id_{{\mathbb {B}}^n},ex\,\Omega )\) is dense in \(\widetilde{\mathcal {R}}_T(id_{{\mathbb {B}}^n},\Omega )\), where \(ex\,\Omega \) denotes the corresponding set of extreme points and \(T\in [0,\infty ]\). We confirm this, by embedding the Carathéodory mappings in a suitable Bochner space.  相似文献   

3.
We consider finite-state, discrete-time, mixing Markov chains \((V,P)\), where \(V\) is the state space and \(P\) is the transition matrix. To each such chain \((V,P)\), we associate a sequence of chains \((V_n,P_n)\) by coding trajectories of \((V,P)\) according to their overlapping \(n\)-blocks. The chain \((V_n,P_n)\), called the \(n\)-block Markov chain associated with \((V,P)\), may be considered an alternate version of \((V,P)\) having memory of length \(n\). Along such a sequence of chains, we characterize the asymptotic behavior of coalescence times and meeting times as \(n\) tends to infinity. In particular, we define an algebraic quantity \(L(V,P)\) depending only on \((V,P)\), and we show that if the coalescence time on \((V_n,P_n)\) is denoted by \(C_n\), then the quantity \(\frac{1}{n} \log C_n\) converges in probability to \(L(V,P)\) with exponential rate. Furthermore, we fully characterize the relationship between \(L(V,P)\) and the entropy of \((V,P)\).  相似文献   

4.
We study the distortion of \(p\)-module under non-homeomorphic mappings \(f\) from Orlicz-Sobolev classes \(W^{1,\varphi }_\mathrm{loc}\) and established a strengthened form of Poletskii’s inequality. This inequality was known for quasiregular mappings and conformal moduli. In addition, our estimates involve the \(p\)-outer dilatation (instead of the classical inner dilatation) and the multiplicity function. In the case of the planar domains, the condition \(f\in W^{1,\varphi }_\mathrm{loc}\) can be replaced by \(f\in W^{1,1}_\mathrm{loc}\).  相似文献   

5.
For a real-valued function defined on a compact set \(K \subset {\mathbb {R}}^m\), the classical Whitney Extension Theorem from 1934 gives necessary and sufficient conditions for the existence of a \(C^k\) extension to \({\mathbb {R}}^m\). In this paper, we prove a version of the Whitney Extension Theorem in the case of \(C^1\), horizontal extensions for mappings defined on compact subsets of \({\mathbb {R}}\) taking values in the sub-Riemannian Heisenberg group \(\mathbb {H}^n\).  相似文献   

6.
We consider the partition lattice \(\Pi (\lambda )\) on any set of transfinite cardinality \(\lambda \) and properties of \(\Pi (\lambda )\) whose analogues do not hold for finite cardinalities. Assuming AC, we prove: (I) the cardinality of any maximal well-ordered chain is always exactly \(\lambda \); (II) there are maximal chains in \(\Pi (\lambda )\) of cardinality \(> \lambda \); (III) a regular cardinal \(\lambda \) is strongly inaccessible if and only if every maximal chain in \(\Pi (\lambda )\) has size at least \(\lambda \); if \(\lambda \) is a singular cardinal and \(\mu ^{< \kappa } < \lambda \le \mu ^\kappa \) for some cardinals \(\kappa \) and (possibly finite) \(\mu \), then there is a maximal chain of size \(< \lambda \) in \(\Pi (\lambda )\); (IV) every non-trivial maximal antichain in \(\Pi (\lambda )\) has cardinality between \(\lambda \) and \(2^{\lambda }\), and these bounds are realised. Moreover, there are maximal antichains of cardinality \(\max (\lambda , 2^{\kappa })\) for any \(\kappa \le \lambda \); (V) all cardinals of the form \(\lambda ^\kappa \) with \(0 \le \kappa \le \lambda \) occur as the cardinalities of sets of complements to some partition \(\mathcal {P} \in \Pi (\lambda )\), and only these cardinalities appear. Moreover, we give a direct formula for the number of complements to a given partition. Under the GCH, the cardinalities of maximal chains, maximal antichains, and numbers of complements are fully determined, and we provide a complete characterisation.  相似文献   

7.
We prove Nikol’skii type inequalities that, for polynomials on the n-dimensional torus \(\mathbb {T}^n\), relate the \(L^p\)-norm with the \(L^q\)-norm (with respect to the normalized Lebesgue measure and \(0 <p <q < \infty \)). Among other things, we show that \(C=\sqrt{q/p}\) is the best constant such that \(\Vert P\Vert _{L^q}\le C^{\text {deg}(P)} \Vert P\Vert _{L^p}\) for all homogeneous polynomials P on \(\mathbb {T}^n\). We also prove an exact inequality between the \(L^p\)-norm of a polynomial P on \(\mathbb {T}^n\) and its Mahler measure M(P), which is the geometric mean of |P| with respect to the normalized Lebesgue measure on \(\mathbb {T}^n\). Using extrapolation, we transfer this estimate into a Khintchine–Kahane type inequality, which, for polynomials on \(\mathbb {T}^n\), relates a certain exponential Orlicz norm and Mahler’s measure. Applications are given, including some interpolation estimates.  相似文献   

8.
This article concerns the iteration of quasiregular mappings on \(\mathbb {R}^d\) and entire functions on \(\mathbb {C}\). It is shown that there are always points at which the iterates of a quasiregular map tend to infinity at a controlled rate. Moreover, an asymptotic rate of escape result is proved that is new even for transcendental entire functions. Let \(f:\mathbb {R}^d\rightarrow \mathbb {R}^d\) be quasiregular of transcendental type. Using novel methods of proof, we generalise results of Rippon and Stallard in complex dynamics to show that the Julia set of f contains points at which the iterates \(f^n\) tend to infinity arbitrarily slowly. We also prove that, for any large R, there is a point x with modulus approximately R such that the growth of \(|f^n(x)|\) is asymptotic to the iterated maximum modulus \(M^{n}(R,f)\).  相似文献   

9.
Given a polyhedron \(L\) with \(h\) facets, whose interior contains no integral points, and a polyhedron \(P\), recent work in integer programming has focused on characterizing the convex hull of \(P\) minus the interior of \(L\). We show that to obtain such a characterization it suffices to consider all relaxations of \(P\) defined by at most \(n(h-1)\) among the inequalities defining \(P\). This extends a result by Andersen, Cornuéjols, and Li.  相似文献   

10.
In this article, we study the action of the \(U_p\) Hecke operator on the normalized spherical vector \(\phi \) in the representation of \({{\mathrm{GSp}}}_4(\mathbf {Q}_p)\) induced from a character on the Borel subgroup. We compute the Petersson norm of \(U_p \phi \) in terms of certain local L-values associated with \(\phi \).  相似文献   

11.
For a commutative C*-algebra \({\mathcal {A}}\) with unit e and a Hilbert \({\mathcal {A}}\)-module \({\mathcal {M}}\), denote by End\(_{{\mathcal {A}}}({\mathcal {M}})\) the algebra of all bounded \({\mathcal {A}}\)-linear mappings on \({\mathcal {M}}\), and by End\(^*_{{\mathcal {A}}}({\mathcal {M}})\) the algebra of all adjointable mappings on \({\mathcal {M}}\). We prove that if \({\mathcal {M}}\) is full, then each derivation on End\(_{{\mathcal {A}}}({\mathcal {M}})\) is \({\mathcal {A}}\)-linear, continuous, and inner, and each 2-local derivation on End\(_{{\mathcal {A}}}({\mathcal {M}})\) or End\(^{*}_{{\mathcal {A}}}({\mathcal {M}})\) is a derivation. If there exist \(x_0\) in \({\mathcal {M}}\) and \(f_0\) in \({\mathcal {M}}^{'}\), such that \(f_0(x_0)=e\), where \({\mathcal {M}}^{'}\) denotes the set of all bounded \({\mathcal {A}}\)-linear mappings from \({\mathcal {M}}\) to \({\mathcal {A}}\), then each \({\mathcal {A}}\)-linear local derivation on End\(_{{\mathcal {A}}}({\mathcal {M}})\) is a derivation.  相似文献   

12.
Let \(\mathcal S\) be a multiplicative semigroup of bounded linear operators on a complex Hilbert space \(\mathcal H\), and let \(\Omega \) be the range of a vector state on \(\mathcal S\) so that \(\Omega = \{ \langle S \xi , \xi \rangle \,{:}\,S \in \mathcal S\}\) for some fixed unit vector \(\xi \in \mathcal H\). We study the structure of sets \(\Omega \) of cardinality two coming from irreducible semigroups \(\mathcal S\). This leads us to sufficient conditions for reducibility and, in some cases, for the existence of common fixed points for \(\mathcal S\). This is made possible by a thorough investigation of the structure of maximal families \(\mathcal F\) of unit vectors in \(\mathcal H\) with the property that there exists a fixed constant \(\rho \in \mathbb C\) for which \(\langle x, y \rangle = \rho \) for all distinct pairs x and y in \(\mathcal F\).  相似文献   

13.
We consider a continuum percolation model on \(\mathbb {R}^d\), \(d\ge 1\). For \(t,\lambda \in (0,\infty )\) and \(d\in \{1,2,3\}\), the occupied set is given by the union of independent Brownian paths running up to time t whose initial points form a Poisson point process with intensity \(\lambda >0\). When \(d\ge 4\), the Brownian paths are replaced by Wiener sausages with radius \(r>0\). We establish that, for \(d=1\) and all choices of t, no percolation occurs, whereas for \(d\ge 2\), there is a non-trivial percolation transition in t, provided \(\lambda \) and r are chosen properly. The last statement means that \(\lambda \) has to be chosen to be strictly smaller than the critical percolation parameter for the occupied set at time zero (which is infinite when \(d\in \{2,3\}\), but finite and dependent on r when \(d\ge 4\)). We further show that for all \(d\ge 2\), the unbounded cluster in the supercritical phase is unique. Along the way a finite box criterion for non-percolation in the Boolean model is extended to radius distributions with an exponential tail. This may be of independent interest. The present paper settles the basic properties of the model and should be viewed as a springboard for finer results.  相似文献   

14.
The well-known Chowla and Zassenhaus conjecture, proven by Cohen in 1990, states that for any \(d\ge 2\) and any prime \(p>(d^2-3d+4)^2\) there is no complete mapping polynomial in \(\mathbb {F}_p[x]\) of degree d. For arbitrary finite fields \(\mathbb {F}_q\), we give a similar result in terms of the Carlitz rank of a permutation polynomial rather than its degree. We prove that if \(n<\lfloor q/2\rfloor \), then there is no complete mapping in \(\mathbb {F}_q[x]\) of Carlitz rank n of small linearity. We also determine how far permutation polynomials f of Carlitz rank \(n<\lfloor q/2\rfloor \) are from being complete, by studying value sets of \(f+x.\) We provide examples of complete mappings if \(n=\lfloor q/2\rfloor \), which shows that the above bound cannot be improved in general.  相似文献   

15.
Let \(\Omega \) be an open set in \(\mathbb {R}^n\) with \(C^1\)-boundary and \(\Sigma \) be the skeleton of \(\Omega \), which consists of points where the distance function to \(\partial \Omega \) is not differentiable. This paper characterizes the cut locus (ridge) \(\overline{\Sigma }\), which is the closure of the skeleton, by introducing a generalized radius of curvature and its lower semicontinuous envelope. As an application we give a sufficient condition for vanishing of the Lebesgue measure of \(\overline{\Sigma }\).  相似文献   

16.
We generalize the concept of strong walk-regularity to directed graphs. We call a digraph strongly \(\ell \)-walk-regular with \(\ell > 1\) if the number of walks of length \(\ell \) from a vertex to another vertex depends only on whether the first vertex is the same as, adjacent to, or not adjacent to the second vertex. This generalizes also the well-studied strongly regular digraphs and a problem posed by Hoffman. Our main tools are eigenvalue methods. The case that the adjacency matrix is diagonalizable with only real eigenvalues resembles the undirected case. We show that a digraph \(\varGamma \) with only real eigenvalues whose adjacency matrix is not diagonalizable has at most two values of \(\ell \) for which \(\varGamma \) can be strongly \(\ell \)-walk-regular, and we also construct examples of such strongly walk-regular digraphs. We also consider digraphs with non-real eigenvalues. We give such examples and characterize those digraphs \(\varGamma \) for which there are infinitely many \(\ell \) for which \(\varGamma \) is strongly \(\ell \)-walk-regular.  相似文献   

17.
Let \(P\) be a set of \(n\) points in the plane. A geometric graph \(G\) on \(P\) is said to be locally Gabriel if for every edge \((u,v)\) in \(G\), the Euclidean disk with the segment joining \(u\) and \(v\) as diameter does not contain any points of \(P\) that are neighbors of \(u\) or \(v\) in \(G\). A locally Gabriel graph(LGG) is a generalization of Gabriel graph and is motivated by applications in wireless networks. Unlike a Gabriel graph, there is no unique LGG on a given point set since no edge in a LGG is necessarily included or excluded. Thus the edge set of the graph can be customized to optimize certain network parameters depending on the application. The unit distance graph(UDG), introduced by Erdos, is also a LGG. In this paper, we show the following combinatorial bounds on edge complexity and independent sets of LGG: (i) For any \(n\), there exists LGG with \(\Omega (n^{5/4})\) edges. This improves upon the previous best bound of \(\Omega (n^{1+\frac{1}{\log \log n}})\). (ii) For various subclasses of convex point sets, we show tight linear bounds on the maximum edge complexity of LGG. (iii) For any LGG on any \(n\) point set, there exists an independent set of size \(\Omega (\sqrt{n}\log n)\).  相似文献   

18.
Let \(\mathfrak g\) be a semisimple Lie algebra over a field \(\mathbb K\), \(\text{char}\left( \mathbb{K} \right)=0\), and \(\mathfrak g_1\) a subalgebra reductive in \(\mathfrak g\). Suppose that the restriction of the Killing form B of \(\mathfrak g\) to \(\mathfrak g_1 \times \mathfrak g_1\) is nondegenerate. Consider the following statements: ( 1) For any Cartan subalgebra \(\mathfrak h_1\) of \(\mathfrak g_1\) there is a unique Cartan subalgebra \(\mathfrak h\) of \(\mathfrak g\) containing \(\mathfrak h_1\); ( 2) \(\mathfrak g_1\) is self-normalizing in \(\mathfrak g\); ( 3) The B-orthogonal \(\mathfrak p\) of \(\mathfrak g_1\) in \(\mathfrak g\) is simple as a \(\mathfrak g_1\)-module for the adjoint representation. We give some answers to this natural question: For which pairs \((\mathfrak g,\mathfrak g_1)\) do ( 1), ( 2) or ( 3) hold? We also study how \(\mathfrak p\) in general decomposes as a \(\mathfrak g_1\)-module, and when \(\mathfrak g_1\) is a maximal subalgebra of \(\mathfrak g\). In particular suppose \((\mathfrak g,\sigma )\) is a pair with \(\mathfrak g\) as above and σ its automorphism of order m. Assume that \(\mathbb K\) contains a primitive m-th root of unity. Define \(\mathfrak g_1:=\mathfrak g^{\sigma}\), the fixed point algebra for σ. We prove the following generalization of a well known result for symmetric Lie algebras, i.e., for m=2: (a) \((\mathfrak g,\mathfrak g_1)\) satisfies ( 1); (b) For m prime, \((\mathfrak g,\mathfrak g_1)\) satisfies ( 2).  相似文献   

19.
In this paper, we obtain an analogue of Toponogov theorem in dimension 3 for compact manifolds \(M^3\) with nonnegative Ricci curvature and strictly convex boundary \(\partial M\). Here we obtain a sharp upper bound for the length \(L(\partial \Sigma )\) of the boundary \(\partial \Sigma \) of a free boundary minimal surface \(\Sigma ^2\) in \(M^3\) in terms of the genus of \(\Sigma \) and the number of connected components of \(\partial \Sigma \), assuming \(\Sigma \) has index one. After, under a natural hypothesis on the geometry of M along \(\partial M\), we prove that if \(L(\partial \Sigma )\) saturates the respective upper bound, then \(M^3\) is isometric to the Euclidean 3-ball and \(\Sigma ^2\) is isometric to the Euclidean disk. In particular, we get a sharp upper bound for the area of \(\Sigma \), when \(M^3\) is a strictly convex body in \(\mathbb {R}^3\), which is saturated only on the Euclidean 3-balls (by the Euclidean disks). We also consider similar results for free boundary stable CMC surfaces.  相似文献   

20.
In this paper we consider the compactness of \(\beta \)-symplectic critical surfaces in a Kähler surface. Let M be a compact Kähler surface and \(\Sigma _i\subset M\) be a sequence of closed \(\beta _i\)-symplectic critical surfaces with \(\beta _i\rightarrow \beta _0\in (0,\infty )\). Suppose the quantity \(\int _{\Sigma _i}\frac{1}{\cos ^q\alpha _i}d\mu _i\) (for some \(q>4\)) and the genus of \(\Sigma _{i}\) are bounded, then there exists a finite set of points \({{\mathcal {S}}}\subset M\) and a subsequence \(\Sigma _{i'}\) which converges uniformly in the \(C^l\) topology (for any \(l<\infty \)) on compact subsets of \(M\backslash {{\mathcal {S}}}\) to a \(\beta _0\)-symplectic critical surface \(\Sigma \subset M\), each connected component of \(\Sigma \setminus {{\mathcal {S}}}\) can be extended smoothly across \({{\mathcal {S}}}\).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号