首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this study, an ultra-sensitive method for the quantification of lysozyme based on the Gd3+ diethylenetriamine-N,N,N′,N″,N″-pentaacetic acid labeling and capillary electrophoresis–inductively coupled plasma mass spectrometry (CE–ICP–MS) was described. The Gd3+-tagged lysozyme was effectively separated by capillary electrophoresis (CE) and sensitively determined by inductively coupled plasma mass spectrometry (ICP–MS). Based on the gadolinium-tagging and CE–ICP–MS, the lysozyme was determined within 12 min with an extremely low detection limit of 3.89 attomole (3.89 × 10−11 mol L−1 for 100 nL of sample injection) and a RSD < 6% (n = 5). The proposed method has been successfully used to detect lysozyme in saliva samples with a recovery of 91–106%, suggesting that our method is sensitive and reliable. The success of the present method provides a new potential for the biological assays and sensitive detection of low-abundant proteins.  相似文献   

2.
A novel bimodal porous N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (AAPTS)-silica monolithic capillary was prepared by sol–gel technology, and used as capillary microextraction (CME) column for aluminum fractionation by electrothermal vaporization inductively coupled plasma mass spectrometry (ETV)–ICP–MS with the use of polytetrafluoroethylene (PTFE) slurry as fluorinating agent. The extraction behaviors of different Al species were studied and it was found that in the pH range of 4–7, labile monomeric Al (free Al3+, Al–OH and Al–F) could be retained quantitatively on the monolithic capillary, while non-labile monomeric Al (Al–Cit and Al–EDTA) passed through the capillary directly. The labile monomeric Al retained on monolithic capillary was eluted with 10 μL 1 mol L− 1 HCl and the elution was introduced into the ETV for fluorination assisted ETV–ICP–MS determination. The total monomeric Al fraction was also determined by AAPTS-silica monolithic CME–fluorination-assisted electrothermal vaporization (FETV)–ICP–MS after the sample solution was adjusted to pH 8.8. Non-labile monomeric Al was obtained by subtracting labile monomeric Al from the total monomeric Al. Under the optimized conditions, the relative standard deviation (R.S.D) was 6.2% (C = 1 μg L− 1, = 7; sample volume, 5 mL), and the limit of detection was 1.6 ng L− 1 for Al with an enrichment factor of 436 fold and a sampling frequency of 9 h− 1. The prepared AAPTS-silica monolithic capillary showed an excellent pH tolerance and solvent stability and could be used for more than 250 times without decreasing adsorption efficiency. The developed method was applied to the fraction of Al in rainwater and fruit juice, and the results demonstrated that the established system had advantages over the existing 8-hydroxyquinoline (8-HQ) chelating system for Al fractionation such as wider pH range, higher tolerance of interference and better regeneration.  相似文献   

3.
Quantitation of trace levels of domoic acid (DA) in seawater samples usually requires labour-intensive protocols involving chemical derivatization with 9-fluorenylmethylchloroformate and liquid chromatography with fluorescence detection (FMOC–LC–FLD). Procedures based on LC–MS have been published, but time-consuming and costly solid-phase extraction pre-concentration steps are required to achieve suitable detection limits. This paper describes an alternative, simple and inexpensive LC method with ultraviolet detection (LC–UVD) for the routine analysis of trace levels of DA in seawater without the use of sample pre-concentration or derivatization steps. Qualitative confirmation of DA identity in dubious samples can be achieved by mass spectrometry (LC–MS) using the same chromatographic conditions. Addition of an ion-pairing/acidifying agent (0.15% trifluoroacetic acid) to sample extracts and the use of a gradient elution permitted the direct analysis of large sample volumes (100 μl), resulting in both high selectivity and sensitivity (limit of detection = 42 pg ml−1 by LC–UVD and 15 pg ml−1 by LC–MS). Same-day precision varied between 0.4 and 5%, depending on the detection method and DA concentration. Mean recoveries of spiked DA in seawater by LC–UVD were 98.8% at 0.1–10 ng ml−1 and 99.8% at 50–1000 ng ml−1. LC–UVD exhibited strong correlation with FMOC–LC–FLD during inter-laboratory analysis of Pseudo-nitzschia multiseries cultures containing 60–2000 ng DA ml−1 (r2 > 0.99), but more variable results were obtained by LC–MS (r2 = 0.85). This new technique was used to confirm the presence of trace DA levels in low-toxicity Pseudo-nitzschia spp. isolates (0.2–1.6 ng ml−1) and in whole-water field samples (0.3–5.8 ng ml−1), even in the absence of detectable Pseudo-nitzschia spp. cells in the water column.  相似文献   

4.
This work describes an arsenic speciation analysis in aqueous effluent from a shale industrial plant using liquid chromatography coupled to inductively coupled plasma mass spectrometry (LC–ICP–MS). Arsenic species have been separated through an anion-exchange column and several parameters investigated, such as retention time, pH, flow rate and concentration of the mobile phase (ammonium carbonate), chloride interference and column conditioning time. The best conditions have been found by fixing the pH of the mobile phase at 8.7. Keeping the mobile phase flow rate at 1.5 ml min− 1, arsenic species were separated by varying the concentration of the mobile phase and the time of elution, as follow: 1.5 mmol l− 1 for 10 min, 12 mmol l− 1 for 10 min and 20 mmol l− 1 for 10 min, respectively. Up to 13 As species present in the samples were separated under these conditions and the following species could be identified and quantified: arsenite [As(III)], dimethylarsinic acid (DMA), monomethylarsonic acid (MMA) and arsenate [As(V)]. The limits of detection of the LC–ICP–MS method were 0.02, 0.06, 0.04 and 0.10 μg l− 1 of As(III), DMA, MMA, and As(V), respectively. The concentration of these species in the samples were from 3.7 to 6.4 μg l− 1, 6.9 to 13.2 μg l− 1, 100 to 142 μg l− 1 and 808 to 1363 μg l− 1 for As(III), DMA, MMA and As(V), respectively. The accuracy, evaluated by recovery tests, varied from 94 to 105% and the precision, evaluated by the relative standard deviation was typically lower than 10%.  相似文献   

5.
In this work, the determination of total As in seawater by hydride generation atomic fluorescence spectrometry was studied. The influence of the chemical, flow and instrumental parameters were investigated and optimized. The pre-reduction of As(V) to As(III) was performed using KI plus ascorbic acid in 3.5 mol L− 1 HCl medium. No multiplicative interference was present and external aqueous calibration could be used. The limit of detection was 36 ng L− 1, while the repeatability was 2% (n = 10), at a 500 ng L− 1 concentration level. The sample throughput was 15 h− 1 if triplicate measurements were made. The accuracy was assessed by the analysis of a seawater certified reference material and excellent agreement between the obtained and certified values was verified. The procedure was used for the analysis of seawater offshore samples collected at the Brazilian coast and results ranging from 860 to 1200 ng L− 1 were found.  相似文献   

6.
A gas chromatography–mass spectrometric (GC–MS) method has been established for the determination of hydrazine in drinking water and surface water. This method is based on the derivatization of hydrazine with ortho-phthalaldehyde (OPA) in water. The following optimum reaction conditions were established: reagent dosage, 40 mg mL−1 of OPA; pH 2; reaction for 20 min at 70 °C. The organic derivative was extracted with methylene chloride and then measured by GC–MS. Under the established condition, the detection and the quantification limits were 0.002 μg L−1 and 0.007 μg L−1 by using 5.0-mL of surface water or drinking water, respectively. The calibration curve showed good linearity with r2 = 0.9991 (for working range of 0.05–100 μg L−1) and the accuracy was in a range of 95–106%, and the precision of the assay was less than 13% in water. Hydrazine was detected in a concentration range of 0.05–0.14 μg L−1 in 2 samples of 10 raw drinking water samples and in a concentration range of 0.09–0.55 μg L−1 in 4 samples of 10 treated drinking water samples.  相似文献   

7.
Two methods available for direct determination of total Fe in seawater at low concentration level have been examined: electrothermal atomization atomic absorption spectrometry (ETAAS) and electrothermal atomization laser excited atomic fluorescence spectrometry (ETA-LEAFS). In a first part, we have optimized experimental conditions of ETAAS (electrothermal program, matrix chemical modification) for the determination of Fe in seawater by minimizing the chemical interference effects and the magnitude of the simultaneous background absorption signal. By using the best experimental conditions, a detection limit of 80 ng L−1 (20 μL, 3σ) for total Fe concentration was obtained by ETAAS. Using similar experimental conditions (electrothermal program, chemical modification), we have optimized experimental conditions for the determination of Fe by LEAFS. The selected experimental conditions for ETA-LEAFS: excitation wavelength (296.69 nm), noise attenuation and adequate background correction led to a detection limit (3σ) of 3 ng L−1 (i.e. 54 pM) for total Fe concentration with the use a 20 μL seawater sample. For the two methods, concentration values obtained for the analysis of Fe in a NASS-5 (0.2 μg L−1) seawater sample were in good agreement with the certified values.  相似文献   

8.
A multi-residue method for the determination of organochlorine pesticides in fish feed samples was developed and optimized. The method is based on a cleanup step of the extracted fat, carried out by liquid–liquid extraction on diatomaceous earth cartridge with n-hexane/acetonitrile (80/20, v/v) followed by solid phase extraction (SPE) with silica gel–SCX cartridge, before the identification and quantification of the residues by gas chromatography–triple quadrupole tandem spectrometry (GC–MS/MS). Performance characteristics, such as accuracy, precision, linear range, limits of detection (LOD) and quantification (LOQ), for each pesticide were determined. Instrumental LODs ranged from 0.01 to 0.11 μg L−1, LOQs were in the range of 0.02–0.35 μg L−1, and calibration curves were linear (r2 > 0.999) in the whole range of explored concentrations (5–100 μg L−1). Repeatability values were in the range of 3–15%, evaluated from the relative standard deviation of six samples spiked at 100 μg kg−1 of fat, and in compliance with that derived by the Horwitz's equation. No matrix effects or interfering substances were observed in fish feed analyses. The proposed method allowed high recoveries (92–116%) of spiked extracted fat samples at 100 μg kg−1, and very low LODs (between 0.02 and 0.63 μg kg−1) and LOQs (between 0.05 and 2.09 μg kg−1) determined in fish feed samples.  相似文献   

9.
A high-accuracy Winkler titration method has been developed for determination of dissolved oxygen concentration. Careful analysis of uncertainty sources relevant to the Winkler method was carried out and the method was optimized for minimizing all uncertainty sources as far as practical. The most important improvements were: gravimetric measurement of all solutions, pre-titration to minimize the effect of iodine volatilization, accurate amperometric end point detection and careful accounting for dissolved oxygen in the reagents. As a result, the developed method is possibly the most accurate method of determination of dissolved oxygen available. Depending on measurement conditions and on the dissolved oxygen concentration the combined standard uncertainties of the method are in the range of 0.012–0.018 mg dm−3 corresponding to the k = 2 expanded uncertainty in the range of 0.023–0.035 mg dm−3 (0.27–0.38%, relative). This development enables more accurate calibration of electrochemical and optical dissolved oxygen sensors for routine analysis than has been possible before.  相似文献   

10.
A gas chromatography–tandem mass spectrometric (GC–MS/MS) method has been established for the determination of cyanide in surface water. This method is based on the derivatization of cyanide with 2-(dimethylamino)ethanethiol in surface water. The following optimum reaction conditions were established: reagent dosage, 0.7 g L−1 of 2-(dimethylamino)ethanethiol; pH 6; reaction carried out for 20 min at 60 °C. The organic derivative was extracted with 3 mL of ethyl acetate, and then measured by using GC–MS/MS. Under the established conditions, the detection and quantification limits were 0.02 μg L−1 and 0.07 μg L−1 in 10-mL of surface water, respectively. The calibration curve had a linear relationship relationship with y = 0.7140x + 0.1997 and r2 = 0.9963 (for a working range of 0.07–10 μg L−1) and the accuracy was in a range of 98–102%; the precision of the assay was less than 7% in surface water. The common ions Cl, F, Br, NO3, SO42−, PO43−, K+, Na+, NH4+, Ca2+, Mg2+, Ba2+, Mn4+, Mn2+, Fe3+, Fe2+ and sea water did not interfere in cyanide detection, even when present in 1000-fold excess over the species. Cyanide was detected in a concentration range of 0.07–0.11 μg L−1 in 6 of 10 surface water samples.  相似文献   

11.
In this work, a headspace-solid-phase micro-extraction (HS-SPME) combined with gas chromatography–mass spectrometry (GC–MS) method for multielemental speciation of organometallic compounds of mercury, lead and tin in water samples was upgraded by the introduction of tandem mass spectrometry (MS/MS) as detection technique. The analytical method is based on the ethylation with NaBEt4 and simultaneous headspace-solid-phase micro-extraction of the derivative compounds followed by GC–MS/MS analysis. The main experimental parameters influencing the extraction efficiency such as derivatisation time, extraction time and extraction temperature were optimized. The overall optimum extraction conditions were the following: a 50 μm/30 μm divinyl-benzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) SPME fibre, 150 min derivatisation time, 15 min extraction time, sample agitation at 250 rpm and 40 °C extraction temperature. The analytical characteristics of the HS-SPME method combined with GC–MS and GC–MS/MS were evaluated. The combination of both techniques HS-SPME and GC–MS/MS allowed to attain lower limits of detection (4–33 ng l−1) than those obtained by HS-SPME–GC–MS (17–45 ng l−1). The proposed method presented good linear regression coefficients (r2 > 0.9970) and repeatability (4.8–21.0%) for all the compounds under study. The accuracy of the method measured as the average percentage recovery of the compounds in spiked river water and seawater samples was higher than 80% for all the compounds studied, except for monobutyltin in the river water sample. A study of the uncertainty associated with the analytical results was also carried out.  相似文献   

12.
A multi-class, multi-residue method for the analysis of 13 novel flame retardants, 18 representative pesticides, 14 polychlorinated biphenyl (PCB) congeners, 16 polycyclic aromatic hydrocarbons (PAHs), and 7 polybrominated diphenyl ether (PBDE) congeners in catfish muscle was developed and evaluated using fast low pressure gas chromatography triple quadrupole tandem mass spectrometry (LP-GC/MS–MS). The method was based on a QuEChERS (quick, easy, cheap, effective, rugged, safe) extraction with acetonitrile and dispersive solid-phase extraction (d-SPE) clean-up with zirconium-based sorbent prior to LP-GC/MS–MS analysis. The developed method was evaluated at 4 spiking levels and further validated by analysis of NIST Standard Reference Materials (SRMs) 1974B and 1947. Sample preparation for a batch of 10 homogenized samples took about 1 h/analyst, and LP-GC/MS–MS analysis provided fast separation of multiple analytes within 9 min achieving high throughput. With the use of isotopically labeled internal standards, recoveries of all but one analyte were between 70 and 120% with relative standard deviations less than 20% (n = 5). The measured values for both SRMs agreed with certified/reference values (72–119% accuracy) for the majority of analytes. The detection limits were 0.1–0.5 ng g−1 for PCBs, 0.5–10 ng g−1 for PBDEs, 0.5–5 ng g−1 for select pesticides and PAHs and 1–10 ng g−1 for flame retardants. The developed method was successfully applied for analysis of catfish samples from the market.  相似文献   

13.
Urinary creatinine (CRE) is an important biomarker of renal function. Fast and accurate quantification of CRE in human urine is required by clinical research. By using isotope dilution extractive electrospray ionization tandem mass spectrometry (EESI–MS/MS) a high throughput method for direct and accurate quantification of urinary CRE was developed in this study. Under optimized conditions, the method detection limit was lower than 50 μg L−1. Over the concentration range investigated (0.05–10 mg L−1), the calibration curve was obtained with satisfactory linearity (R2 = 0.9861), and the relative standard deviation (RSD) values for CRE and isotope-labeled CRE (CRE-d3) were 7.1–11.8% (n = 6) and 4.1–11.3% (n = 6), respectively. The isotope dilution EESI–MS/MS method was validated by analyzing six human urine samples, and the results were comparable with the conventional spectrophotometric method (based on the Jaffe reaction). Recoveries for individual urine samples were 85–111% and less than 0.3 min was taken for each measurement, indicating that the present isotope dilution EESI–MS/MS method is a promising strategy for the fast and accurate quantification of urinary CRE in clinical laboratories.  相似文献   

14.
Potassium formate was extracted from airport storm water runoff by headspace solid-phase microextraction (HS-SPME) and analyzed by GC–MS. Formate was transformed to formic acid by adding phosphoric acid. Subsequently, formic acid was derivatized to methyl formate by adding methanol. Using sodium [2H]formate (formate-d) as an internal standard, the relative standard deviation of the peak area ratio of formate (m/z 60) and formate-d (m/z 61) was 0.6% at a concentration of 208.5 mg L−1. Calibration was linear in the range of 0.5–208.5 mg L−1. The detection limit calculated considering the blank value was 0.176 mg L−1. The mean concentration of potassium formate in airport storm water runoff collected after surface de-icing operations was 86.9 mg L−1 (n = 11) with concentrations ranging from 15.1 mg L−1 to 228.6 mg L−1.  相似文献   

15.
An efficient analytical method for simultaneous determination of 12 SFEs in serum is described. The method involves solid-phase extraction to isolate of SFEs from interfering species, especially cholesteryl esters, conversion to trimethylsilyl (TMS) ether derivatives for the direct analysis by gas chromatography–mass spectrometry (GC–MS) using a high temperature MXT-1 (Silcosteel-treated stainless steel) capillary column. All SFEs as their TMS derivatives were well separated with excellent peak shapes within 12 min. Overall recoveries ranged from 88% to 119%, with a detection limits for SFEs ranged from 2 to 30 μg L−1. The linearity as correlation coefficient was higher than 0.99 except for pregnenolone-3-arachidate (r2 = 0.98) in the concentration range of 5–3000 μg L−1. Ten serum samples obtained from volunteers were also analyzed and quantitatively determined of DHEA-3-palmitate and pregnenolone-3-stearate in 1.8–1195.8 μg L−1 concentration. The devised high temperature GC–MS method could be useful for identification of SFEs in biological specimens including serum.  相似文献   

16.
A comparative study of six SPE conventional and non-conventional sorbent materials (silica RP-C18, LiChrolut EN, Amberlite XAD-2, C60 fullerene, multiwall carbon nanotubes and graphitized carbon black) was carried out for the in situ derivatization/preconcentration of eight aldehydes with 2,4-dinitrophenylhydrazine. Although two of the sorbents, LiChrolut EN and RP-C18, turned out to be the most suitable for ultratrace analysis of the aldehydes, LiChrolut EN showed higher capacity for 2,4-dinitrophenylhydrazine trapping (higher efficiency for the in situ derivatization reaction) and superior performance in terms of sensitivity (likely a result of its increased sample breakthrough volume). The LiChrolut EN-based method combined with LC–MS/MS allowed the determination of aldehydes over the linear range of 0.02–15 μg l−1, with limits of detection at 6–24 ng l−1 and precision of 3.2–7.2%. The method was applied to determine low-molecular mass aldehydes in water samples. These results indicate that the method proposed is a straightforward and sensitive tool for the determination of these aldehydes in water samples providing better results than those LC–MS/MS reported alternatives in terms of the limit of detection, sample requirements for analysis and cost.  相似文献   

17.
Liquid chromatography (LC)/tandem mass spectrometry (MS/MS) after supramolecular solvent-based microextraction (SUSME) was firstly used in this work for the enantioselective determination of chiral pesticides in natural waters. The method developed for the quantitation of the R- and S-enantiomers of mecoprop (MCPP) and dichlorprop (DCPP) involved the extraction of the herbicides in a supramolecular solvent (SUPRAS) made up of reverse aggregates of dodecanoic acid (DoA), analyte re-extraction in acetate buffer (pH = 5.0), separation of the target enantiomers on a chiral column of permethylated α-cyclodextrin under isocratic conditions, and detection of the daughter ions (m/z = 140.9 and 160.6 for MCPP and DCPP, respectively) using a hybrid triple quadrupole mass spectrometer equipped with an electrospray source operating in the negative ion mode. Similar recoveries (ca. 75%) and actual concentration factors (ca. 94) were obtained for both phenoxypropanoic acids (PPAs). The quantitation limits were 1 ng L−1 for R- and S-MCPP, and 4 ng L−1 for R- and S-DCPP, and the precision, expressed as relative standard deviation (n = 6) was in the ranges 2.4–2.7% ([R-MCPP] = [S-MCPP] = 5 ng L−1 and [R-DCPP] = [S-DCPP] = 15 ng L−1) and 1.6–1.8% (100 ng L−1 of each enantiomer). The SUSME-LC–MS/MS method was successfully applied to the determination of the enantiomers of MCPP and DCPP in river and underground waters, fortified at concentrations between 15 and 180 ng L−1 at variable enantiomeric ratios (ER = 1–9).  相似文献   

18.
A highly sensitive determination of mercury in the presence of Cu(II) using a boron-doped diamond (BDD) thin film electrode coupled with sequential injection–anodic stripping voltammetry (SI–ASV) was proposed. The Cu(II) was simultaneously deposited with Hg(II) in a 0.5 M HCl supporting electrolyte by electrodeposition. In presence of an excess of Cu(II), the sensitivity for the determination of Hg(II) was remarkably enhanced. Cu(II) and Hg(II) were on-line deposited onto the BDD electrode surface at −1.0 V (vs. Ag/AgCl, 3 M KCl) for 150 s with a flow rate of 14 μL s−1. An anodic stripping voltammogram was recorded from −0.4 V to 0.25 V using a frequency of 60 Hz, an amplitude of 50 mV, and a step potential of 10 mV at a stopped flow. Under the optimal conditions, well-defined peaks of Cu(II) and Hg(II) were found at −0.25 V and +0.05 V (vs. Ag/AgCl, 3 M KCl), respectively. The detection of Hg(II) showed two linear dynamic ranges (0.1–30.0 ng mL−1 and 5.0–60.0 ng mL−1). The limit of detection (S/N = 3) obtained from the experiment was found to be 0.04 ng mL−1. The precision values for 10 replicate determinations were 1.1, 2.1 and 2.9% RSD for 0.5, 10 and 20 ng mL−1, respectively. The proposed method has been successfully applied for the determination of Hg(II) in seawater, salmon, squid, cockle and seaweed samples. A comparison between the proposed method and an inductively coupled plasma optical emission spectrometry (ICP-OES) standard method was performed on the samples, and the concentrations obtained via both methods were in agreement with the certified values of Hg(II), according to the paired t-test at a 95% confidence level.  相似文献   

19.
The use of a permeation liquid membrane system for the preconcentration and separation of nickel in natural and sea waters and subsequent determination by atomic absorption spectroscopy is presented. 2-Hydroxybenzaldehyde N-ethylthiosemi-carbazone (2-HBET) in toluene is used as the active component of the liquid membrane. A study strategy based on a simplex design has been followed. Several chemical and physical parameters were optimized. Maximum permeation coefficient was obtained at a feed solution pH of 9.4, 0.3 mol l−1 of HNO3 in the stripping solution and 1.66 mmol l−1 of 2-HBTE in toluene as carrier. The precision of the method was 4.7% at 95% significance level and a detection limit of 0.012 μg l−1 of nickel was achieved. The preconcentration procedure showed a linear response within the studied concentration range from 3 to 500 μg l−1 of Ni in the feed solution. The method was validated with different spiked synthetic seawater and certified reference water samples: TMDA-62 and LGC 6016, without matrix interferences and showing good concordance with the certified values, being the relative errors −5.9% and −2.2%, respectively. Under optimal conditions, the average preconcentration yield for real seawater samples was 98 ± 5%, with a nickel preconcentration factor of 20.83 and metal concentrations ranging between 2.8 and 5.4 μg l−1.  相似文献   

20.
Based on carbon nanofibers (CNFs) as a solid phase extraction adsorbent, a microcolumn preconcentration method coupled to inductively coupled plasma mass spectrometry (ICP–MS) was developed for the determination of trace elements (Mn, Co and Ni). The effect of various experimental parameters such as pH, sample flow rate and volume, elution solution and interfering ions on the retention of the studied ions have been investigated systematically. During all the steps of the experimental process, Mn, Co and Ni could be quantitatively sorbed on the microcolumn containing CNFs in the range of pH 6.0–9.0, and then eluted completely with 0.5 mol ml− 1 HNO3. A preconcentration factor of 150-fold was obtained. The detection limits for Mn, Co and Ni were 40, 0.4 and 8.0 pg ml− 1, respectively, with relative standard deviations less than 6.0%. In order to validate the proposed method, two certified reference materials of human hair (GBW 07601) and mussel (GBW 08571), and water sample were analyzed with satisfactory results. The recoveries were between 95.0 and 114%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号