首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A graphene, chitosan and Fe3O4 nanoparticles (nano-Fe3O4) modified glassy carbon electrode (graphene-chitosan/nano-Fe3O4/GCE) was fabricated. The modified electrode was characterized by scanning electron microscope and electrochemical impedance spectroscopy. The electrochemical oxidation behavior of guanosine was investigated in pH 7.0 phosphate buffer solution by cyclic voltammetry and differential pulse voltammetry. The experimental results indicated that the modified electrode exhibited an electrocatalytic and adsorptive activities towards the oxidation of guanosine. The transfer electron number (n), transfer proton number (m) and electrochemically effective surface area (A) were calculated. Under the optimized conditions, the oxidation peak current was proportional to guanosine concentration in the range of 2.0 × 10−6 to 3.5 × 10−4 mol L−1 with the correlation coefficient of 0.9939 and the detection limit of 7.5 × 10−7 mol L−1 (S/N = 3). Moreover, the modified electrode showed good ability to discriminate the electrochemical oxidation response of guanosine, guanine and adenosine. The proposed method was further applied to determine guanosine in spiked urine samples and traditional Chinese medicines with satisfactory results.  相似文献   

2.
In this paper, LaNi0.6Co0.4O3 (LNC) nanoparticles were synthesized by the sol–gel method, and the structure and morphology of LNC nanoparticles were characterized by X-ray diffraction spectrum, scanning electron microscopy and transmitting electron microscopy. And then, LNC was used to modify carbon paste electrode (CPE) without any adhesive to fabricate hydrogen peroxide and glucose sensor, and the results demonstrated that LNC exhibited strong electrocatalytical activity by cyclic voltammetry and amperometry. In H2O2 determination, linear response was obtained in the concentration range of 10 nM–100 μM with a detection limit of 1.0 nM. In glucose determination, there was the linear region of 0.05–200 μM with a detection limit of 8.0 nM. Compared with other reports, the proposed sensor also displayed high sensitivity toward H2O2 (1812.84 μA mM−1 cm−2) and glucose (643.0 μA mM−1 cm−2). Moreover, this prepared sensor was applied to detect glucose in blood serum and hydrogen peroxide in toothpaste samples with satisfied results, indicating its possibility in practical application.  相似文献   

3.
Jianwen Wang  Yifeng Tu 《Talanta》2009,77(4):1454-4466
A novel disposable third-generation hydrogen peroxide (H2O2) biosensor based on horseradish peroxidase (HRP) immobilized on the gold nanoparticles (AuNPs) electrodeposited indium tin oxide (ITO) electrode is investigated. The AuNPs deposited on ITO electrode were characterized by UV-vis, SEM, and electrochemical methods. The AuNPs attached on the ITO electrode surface with quasi-spherical shape and the average size of diameters was about 25 nm with a quite symmetric distribution. The direct electron chemistry of HRP was realized, and the biosensor exhibited excellent performances for the reduction of H2O2. The amperometric response to H2O2 shows a linear relation in the range from 8.0 μmol L−1 to 3.0 mmol L−1 and a detection limit of 2 μmol L−1 (S/N = 3). The value of HRP immobilized on the electrode surface was found to be 0.4 mmol L−1. The biosensor indicates excellent reproducibility, high selectivity and long-term stability.  相似文献   

4.
A novel voltammetric sensor for O,O-dimethyl-(2,4-dichlorophenoxyacetoxyl)(3′-nitrophenyl)methinephosphonate (Phi-NO2) based on molecularly imprinted polymer (MIP) film electrode is constructed by using sol-gel technology. The sensor responds linearly to Phi-NO2 over the concentration range of 2.0 × 10−5 to 1.0 × 10−8 mol L−1 and the detection limit is 1.0 × 10−9 mol L−1 (S/N = 3). This sensor provides an efficient way for eliminating interferences from coexisting substances in the solution. The high sensitivity, selectivity and stability of the sensor demonstrates its practical application for a simple and rapid determination of Phi-NO2 in cabbage samples.  相似文献   

5.
BiFeO3 magnetic nanoparticles (BFO MNPs) are used as a catalyst to develop an ultrasensitive method for the determination of H2O2. It is found that BFO MNPs can catalyze the decomposition of H2O2 to produce OH radicals, which in turn oxidize the weakly fluorescent benzoic acid to a strongly fluorescent hydroxylated product with a maximum emission at 405 nm. This makes it possible to sensitively quantify traces of H2O2. Under optimized conditions, the fluorescence intensity is observed to be well linearly correlated with H2O2 concentration from 2.0 × 10−8 to 2.0 × 10−5 mol L−1 with a detection limit of 4.5 × 10−9 mol L−1 (S/N = 3). In addition, a selective method for glucose determination is developed by using both glucose oxidase and BFO MNPs, which has a linear range for glucose concentration from 1.0 × 10−6 to 1.0 × 10−4 mol L−1 with a detection limit of 5.0 × 10−7 mol L−1. These new methods have been successfully applied for the determination of H2O2 in rainwater and glucose in human serum samples.  相似文献   

6.
A compact, reliable and low cost flow injection chemiluminescence system is described. The flow system consists of a set of solenoid micro-pumps that can dispense reproductive micro-volumes of solutions. The luminometer was based on a coiled cell constructed from polyethylene tubing that was sandwiched between two large area photodiodes. The whole equipment costs about US$ 750 and weights ca. 3 kg. Equipment performance was evaluated by measuring low concentrations of hydrogen peroxide by oxidation of luminol and for the determination of ammonium, based on its inhibition of the luminescence provided by the reaction of luminol and sodium hypochlorite. Linear responses were achieved within 1.0-80 μmol L−1 H2O2 and 0.6-60 μmol L−1 NH4+ with detection limits estimated as 400 nmol L−1 H2O2 and 60 nmol L−1 NH4+ at the 99.7% confidence level. Coefficients of variation were 1.0 and 1.8%, estimated for 20 μmol L−1 H2O2 and 15 μmol L−1 NH4+ (n = 20), respectively. Reagent consumption of 55 μg luminol, effluent volume of 950 μL per determination and sampling rate of 120 samples per hour were also achieved.  相似文献   

7.
In this study, a novel material for the electrochemical determination of 17β-estradiol using an electrode based on reduced graphene oxide and a metal complex porphyrin has been applied to environmental monitoring. The electrochemical profile of the proposed electrode was analyzed by differential pulse voltammetry, which showed a shift of the oxidation peak potential of 17β-estradiol to 150 mV in a less positive direction compared to the bare reduced graphene oxide electrode. DPV experiments were performed in PBS at pH 7.0 to determine 17β-estradiol without any previous step of extraction, cleanup, or derivatization, in the range of 0.1–1.0 μmol L−1 with a detection limit archived at 5.3 nmol L−1 (1.4 μg L−1). The proposed sensor was successfully applied in the determination of 17β-estradiol in a river water sample without any purification step and was successfully analyzed under the standard addition method. All the obtained results were in agreement with those from the HPLC procedure.  相似文献   

8.
M. Ghiaci  R.J. Kalbasi 《Talanta》2007,73(1):37-45
The main purpose of this study is to develop an inexpensive, simple, selective and especially highly selective modified mixed-oxide carbon paste electrode (CPE) for voltammetric determination of Pb(II). For the preliminary screening purpose, the catalyst was prepared by modification of SiO2-Al2O3 mixed-oxide and characterized by TG, CHN elemental analysis and FTIR spectroscopy. Using cyclic voltammetry the electroanalytical characteristics of the catalyst have been determined, and consequently the modified mixed-oxide carbon paste electrode was constructed and applied for determination of Pb(II). The electroanalytical procedure for determination of the Pb(II) comprises two steps: the chemical accumulation of the analyte under open-circuit conditions followed by the electrochemical detection of the preconcentrated species using differential pulse anodic stripping voltammetry. During the preconcentration step, Pb(II) was accumulated on the surface of the modifier by the formation of a complex with the nitrogen atoms of the pyridyl groups in the modifier. The peak currents increases linearly with Pb(II) concentration over the range of 2.0 × 10−9 to 5.2 × 10−5 mol L−1 (r2 = 0.9995).The detection limit (three times signal-to-noise) was found to be 1.07 × 10−9 mol L−1 Pb(II). The chemical and instrumental parameters have been optimized and the effect of the interferences has been determined. The Proposed method was used for determination of lead ion in the real samples.  相似文献   

9.
Electrochemical behavior and electrogenerated chemiluminescence (ECL) of tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+) immobilized in poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate)-poly(vinyl alcohol) (PEDOT/PSS-PVA) composite films via ion-exchange have been investigated with tripropylamine (TPA) as the co-reactant at a glassy carbon electrode. The immobilized Ru(bpy)32+ performed a surface-controlled electrode reaction. The Ru(bpy)32+ modified electrode showed a fast ECL response to TPA, and was used for the ECL detection of TPA with high sensitivity. The ECL intensity was linearly related to concentrations of TPA over the range from 0.50 μmol L−1 to 0.80 mmol L−1, and the detection limit was 0.10 μmol L−1 (S/N = 3). The as-prepared electrode exhibited good precision and long-term stability for TPA determination.  相似文献   

10.
Fei Wang  Xiaohan Wei  Shusheng Zhang 《Talanta》2010,80(3):1198-1204
The π-A isotherms and UV-vis spectra of the transferred films suggested that the monolayer of p-tert-butylthiacalix[4]arene can coordinate with Hg2+ at the air-water surface. From these observations, a glassy carbon electrode coated with Langmuir-Blodgett film of p-tert-butylthiacalix[4] arene as a new voltammetric sensor is designed for the determination of trace amounts of Hg2+. Compared with bare glassy carbon electrode and modified glassy carbon electrode using direct coating method, the Langmuir-Blodgett film-modified electrode can greatly improve the measuring sensitivity of Hg2+. Under the selected conditions, the Langmuir-Blodgett film-modified electrode in 0.1 mol L−1 H2SO4 + 0.01 mol L−1 KCl solution shows a linear voltammetric response for Hg2+ in the range of 5.0 × 10−10 to 1.5 × 10−7 mol L−1, with a detection limit of 2.0 × 10−10 mol L−1. The proposed method was also applied to determine Hg2+ in water samples (tap, lake and river water). In addition, the fabricated electrode exhibited a distinct advantage of simple preparation, non-toxicity, good reproducibility and good stability.  相似文献   

11.
12.
Boron-doped diamond (BDD) films are excellent electrode materials, whose electrochemical activity for some analytes can be tuned by controlling their surface termination, most commonly either to predominantly hydrogen or oxygen. This tuning can be accomplished by e.g. suitable cathodic or anodic electrochemical pretreatments. Recently, it has been shown that amorphous carbon nitride (a-CNx) films may present electrochemical characteristics similar to those of BDD, including the influence of surface termination on their electrochemical activity toward some analytes. In this work, we report for the first time a complete electroanalytical method using an a-CNx electrode. Thus, an a-CNx film deposited on a stainless steel foil by DC magnetron sputtering is proposed as an alternative electrode for the simultaneous determination of dopamine (DA) and ascorbic acid (AA) in synthetic biological samples by square-wave voltammetry. The obtained results are compared with those attained using a BDD electrode. For both electrodes, a same anodic pretreatment in 0.1 mol L−1 KOH was necessary to attain an adequate and equivalent separation of the DA and AA oxidation potential peaks of about 330 mV. The detection limits obtained for the simultaneous determination of these analytes using the a-CNx electrode were 0.0656 μmol L−1 for DA and 1.05 μmol L−1 for AA, whereas with the BDD electrode these values were 0.283 μmol L−1 and 0.968 μmol L−1, respectively. Furthermore, the results obtained in the analysis of the analytes in synthetic biological samples were satisfactory, attesting the potential application of the a-CNx electrode in electroanalysis.  相似文献   

13.
A simple and sensitive spectrophotometric flow method for determination of low concentrations of the flotation collector O-ethyldithiocarbonate (ethyl xanthate, CH3CH2-O-CS2) in solutions is described. The method is based on ethyl xanthate detection at 301 nm in medium of NaOH 50 mmol L−1. By injection of 200 μL of sample, the analytical method shows linear response for the ethyl xanthate concentration from 0.5 up to 500 μmol L−1. Successive injections of 4 μmol L−1 ethyl xanthate (n = 23) show a coefficient of variation lower than 0.6%, denoting high repeatability. The detection limit is 0.3 μmol L−1. At a flow rate of 2.0 mL min−1, a frequency of 120 injections/h of ethyl xanthate can be attained. By introduction of a tangential dialysis cell in the FIA system, the manual sample filtration step with 0.22 μm filter was eliminated and the residual interference of suspended material, was completely overcome even for unfiltered sludge suspension samples, an important advantage that compensates for the frequency reduction to 25 injections/h elevation and detection limit elevation to 2 μmol L−1, still outreaching for many applications. Potential applications of the method embrace the at line determination of ethyl xanthate in the ore processing industry, control of the concentration at its optimal level during the flotation process, as well as monitoring of residues in the effluents.  相似文献   

14.
A novel flow injection chemiluminescence (FI-CL) sensor for determination of sulfadiazine (SDZ) using core–shell magnetic molecularly imprinted polymers (MMIPs) as recognition element is developed. Briefly, a hydrophilic MMIPs layer was produced at the surface of Fe3O4@SiO2 magnetic nanoparticles (MNPs) via combination of molecular imprinting and reversible stimuli responsive hydrogel. And it provided the MMIPs with excellent adsorption capacity and rapid adsorption rate due to the imprinted sites mostly situated on the surface of MMIPs. Then the prepared SDZ-MMIPs were packed into flow cell to establish a novel FI-CL sensor. The sensor provided a wide linear range for SDZ of 4.0 × 10−7 to 1.0 × 10−4 mol L−1 with a detection limit of 1.54 × 10−7 mol L−1. And the relative standard deviation (RSD) for the determination of 1.0 × 10−6 mol L−1 SDZ was 2.56% (n = 11). The proposed method was applied to determine SDZ in urine samples and satisfactory results were obtained.  相似文献   

15.
Haghighi B  Bozorgzadeh S 《Talanta》2011,85(4):2189-2193
ZnO nanoparticles (nanoZnO) were decorated on multiwalled carbon nanotubes (MWCNTs) and then the prepared nano-hybrids, nanoZnO-MWCNTs, were immobilized on the surface of a glassy carbon electrode (GCE) to fabricate nanoZnO-MWCNTs modified GCE. The prepared electrode, GCE/nanoZnO-MWCNTs, showed excellent electrocatalytic activity towards luminol electrochemiluminescence (ECL) reaction. The electrode was then further modified with lactate oxidase and Nafion to fabricate a highly sensitive ECL lactate biosensor. Two linear dynamic ranges of 0.01-10 μmol L−1 and 10-200 μmol L−1 were obtained for lactate with the correlation coefficient better than 0.9996. The detection limit (S/N = 3) was 4 nmol L−1 lactate. The relative standard deviation for repetitive measurements (n = 6) of 10 μmol L−1 lactate was 1.5%. The fabrication reproducibility for five biosensors prepared and used in different days was 7.4%. The proposed ECL lactate biosensor was used for determination of lactate in human blood plasma samples with satisfactory results.  相似文献   

16.
Ding SN  Xu JJ  Zhang WJ  Chen HY 《Talanta》2006,70(3):572-577
Tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+)-Zirconia-Nafion composite modified glassy carbon disk electrode as a solid-state electrochemiluminescence (ECL) detector is successfully applied to an electrophoretic microchip system with a wall-jet configuration. Pharmaceuticals such as tramadol, lidocaine and ofloxacin were selected to characterize the performance of this microchip capillary electrophoresis (CE)-ECL detection system. Voltammetric and ECL behaviors of immobilized Ru(bpy)32+ were investigated in lidocaine system. Influences of the separation electric field to cyclic voltammograms (CVs) of the immobilized Ru(bpy)32+ were also investigated. Tramadol, lidocaine and ofloxacin can be baseline separated without any additives. The detection limits (S/N = 3) were 2.5 × 10−5 mol L−1 for tramadol, 5.0 × 10−6 mol L−1 for lidocaine, 1.0 × 10−5 mol L−1 for ofloxacin under the sample injection of picoliters, and the linear ranges were from 5.0 × 10−5 to 2.5 × 10−3 mol L−1 for tramadol, 1.0 × 10−5 to 1.0 × 10−3 mol L−1 for lidocaine, and 1.0 × 10−5 to 2.5 × 10−3 mol L−1 for ofloxacin, respectively.  相似文献   

17.
We utilized CuNiO nanoparticles modified graphene sheets (CuNiO–graphene) to the application of enzymeless glucose sensing. The hydrothermal synthesized CuNiO nanoparticles were successfully assembled on graphene sheets. Distinct from general method, the high quality pristine graphene was produced by chemical vapor deposition (CVD) and bubbling transferred on the electrode. Incorporating the excellent electronic transport of graphene and high electrocatalytic activity of CuNiO nanoparticles, the CuNiO–graphene nanocomposite modified electrode possessed strong electrocatalytic ability toward glucose in alkaline media. The proposed nonenzymatic glucose sensor exhibited wide linear range up to 16 mM (two parts, from 0.05 to 6.9 mM and 6.9–16 mM) and high sensitivity (225.75 μA mM−1 cm−2 and 32.44 μA mM−1 cm−2, respectively). Excellent selectivity and acceptable stability were also achieved. Such an electrode would be attractive to sensor construction for its good properties, simple operation and low expense.  相似文献   

18.
A new sensor for simultaneous determination of peroxyacetic acid and hydrogen peroxide using silver nanoparticles (Ag-NPs) as a chromogenic reagent is introduced. The silver nanoparticles have the catalytic ability for the decomposition of peroxyacetic acid and hydrogen peroxide; then the decomposition of them induces the degradation of silver nanoparticles. Hence, a remarkable change in the localized surface plasmon resonance absorbance strength could be observed. Spectra-kinetic approach and artificial neural network was applied for the simultaneous determination of peroxyacetic acid and hydrogen peroxide. Linear calibration graphs were obtained in the concentration range of (8.20 × 10−5 to 2.00 × 10−3 mol L−1) for peroxyacetic acid and (2.00 × 10−5 to 4.80 × 10−3 mol L−1) for hydrogen peroxide. The analytical performance of this sensor has been evaluated for the detection of simultaneous determination of peroxyacetic acid and hydrogen peroxide in real samples.  相似文献   

19.
Navid Nasirizadeh 《Talanta》2009,80(2):656-661
A highly efficient noradrenalin (NA) biosensor was fabricated on the basis of hematoxylin electrodeposited on a glassy carbon electrode, GCE. The cyclic voltammetric responses of the hematoxylin biosensor at various scan rates, which were obtained in a 0.25 mmol L−1 NA solution, showed the characteristic shape typical of an ECcat process. The kinetic parameters such as electron transfer coefficient, α, the catalytic electron transfer rate constant, k′, and the standard catalytic electron transfer rate constant, k0, for oxidation of NA at the hematoxylin biosensor surface were estimated using cyclic and RDE voltammetry. The peaks of differential pulse voltammetric (DPV) for NA and acetaminophen (AC) oxidation at the hematoxylin biosensor surface were clearly separated from each other when they co-exited in the physiological pH (pH 7.0). It was, therefore, possible to simultaneously determine NA and AC in the samples at a hematoxylin biosensor. Linear calibration curves were obtained for 5.0 × 10−1 to 65.40 μmol L−1 and 65.40-274.20 μmol L−1 of NA, and for 12.00-59.10 μmol L−1 and 59.10-261.70 μmol L−1 of AC. The sensitivities of the biosensor to NA in the absence and presence of AC were found virtually the same, which indicates the fact that the electrocatalytic oxidation processes of NA are independent of AC and, therefore, simultaneous or independent measurements of the two analytes (NA and AC) are possible without any interference. The results of 16 successive measurements show an average voltammetric peak current of 1.13 ± 0.03 μA for an electrolyte solution containing 5.00 μmol L−1 NA. The hematoxylin biosensor has been satisfactorily used for the determination of NA and AC in pharmaceutical formulations. The results obtained, using the biosensor, are in very good agreement with those declared in the label of pharmaceutical inhalation products.  相似文献   

20.
This work describes the assessment of a SO2-selective electrode based on the use of the neutral carrier 5,10,15,20-tetraphenyl(porphyrinate)zinc(II) in a PVC membrane plasticized with 2-nitrophenyl phenyl ether. After being conditioned in 2 mol L−1 diethylamine solution for 24 h, the electrode exhibited selective anionic response toward the analyte in a concentration interval of more than four decades, with an slope of −59.5 mV dec−1, a practical detection limit of 3.7 × 10−6 mol L−1 and a low limit of linear range of 7.2 × 10−6 mol L−1. The response mechanism is based on the displacement of the diethylamine:metalloporphyrin complex equilibrium within membrane bulk, inducing a variation in the cationic-sites to ionophore ratio. In turn, free hydroxyl ions are complexed by the displaced ionophore in a ratio 1:1 and translated as single negative charge nernstian response. Finally, the selectivity of the electrode is evaluated in view of its application to wine analysis. Results had high accuracy and precision when compared with a reference method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号