首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The hydrophobic conductive polymer, poly(3-octylthiophene) (POT), is considered as uniquely suited to be used as an ion-to-electron transducer in solid contact (SC) ion-selective electrodes (ISEs). However, the reports on the performance characteristics of POT-based SC ISEs are quite conflicting. In this study, the potential sources of the contradicting results on the ambiguous drift and poor potential reproducibility of POT-based ISEs are compiled, and different approaches to minimize the drift and the differences in the standard potentials of POT-based SC ISEs are shown. To set the potential of the POT film, it has been loaded with a 7,7,8,8-tetracyanoquinodimethane (TCNQ/TCNQ·?) redox couple. An approximately 1:1 TCNQ/TCNQ·?ratio in the POT film has been achieved through potentiostatic control of the potential of the redox couple-loaded conductive polymer. It is hypothesized that once the POT film has a stable, highly reproducible redox potential, it will provide similarly stable and reproducible interfacial potentials between the POT film and the electron-conducting substrate and result in SC ISEs with excellent reproducibility and potential stability. Towards this goal, the potentials of Au, GC, and Pt electrodes with drop-cast POT film coatings were recorded in KCl solutions as a function of time. Some of the POT films were loaded with TCNQ and coated with a K+-selective membrane. The improvement in the potential stabilities and sensor-to-sensor reproducibility as a consequence of the incorporation of TCNQ in the POT film and the potentiostatic control of the TCNQ/TCNQ·?ratio is reported.  相似文献   

2.
Peper S  Gonczy C  Runde W 《Talanta》2005,67(4):713-717
A new strategy for improving the robustness of membrane-based ion-selective electrodes (ISEs) is introduced based on the incorporation of microsphere-immobilized ionophores into plasticized polymer membranes. As a model system, a Cs+-selective electrode was developed by doping ethylene glycol-functionalized cross-linked polystyrene microspheres (P-EG) into a plasticized poly(vinyl chloride) (PVC) matrix containing sodium tetrakis-[3,5-bis(trifluoromethyl)phenyl] borate (TFPB) as the ion exchanger. Electrodes were evaluated with respect to Cs+ in terms of sensitivity, selectivity, and dynamic response. ISEs containing P-EG and TFPB that were plasticized with 2-nitrophenyl octyl ether (NPOE) yielded a linear range from 10−1 to 10−5 M Cs+, a slope of 55.4 mV/decade, and a lower detection limit (log aCs) of −5.3. In addition, these membranes also demonstrated superior selectivity over Li+, Na+, and alkaline earth metal ion interferents when compared to analogous membranes plasticized with bis(2-ethylhexyl) sebacate (DOS) or membranes containing a lipophilic, mobile ethylene glycol derivative (ethylene glycol monooctadecyl ether (U-EG)) as ionophore.  相似文献   

3.
Solid contact (SC) ion‐selective electrodes (ISEs) have been recognized as the next generation of ISEs. In this work, the electrical conductivity and mechanical strength of a carbon nanotube (CNT) tower enable it to play the dual roles of transducer and substrate for micro SC‐ISEs. The electrode had a close to Nernstian slope of 35 mV/decade aCa2+, a linear range of four orders of magnitude of calcium ion activity (10?5.6 to 10?1.8 M), and a detection limit of 1.6×10?6 M. The simplified fabrication by a one‐step drop casting makes miniaturizing SC‐ISEs and fabricating sensor arrays easier to achieve.  相似文献   

4.
Nine monoazathiacrown ethers have been synthesized and explored as ionophores for polymeric membrane Ag+-selective electrodes. Potentiometric responses reveal that the ion-selective electrodes (ISEs) based on 2,2′-thiodiethanethiol derivatives can exhibit excellent selectivities toward Ag+. The plasticized poly(vinyl chloride) membrane electrode using 22-membered N2S5-ligand as ionophore has been characterized and its logarithmic selectivity coefficients for Ag+ over most of the interfering cations have been determined as <−8.0. Under optimal conditions, a lower detection limit of 2.2 × 10−10 M can be obtained for the membrane Ag+-ISE.  相似文献   

5.
The electrode characteristics of ion-selective electrodes (ISEs) for K+, Na+, NH4 +, and Ca2+ based on bilayer film coatings, where the inner layer films are electroactive electropolymerized ones and the outer layer films are composed of conventional ion-sensitive materials, have been examined. These ISEs of the coated-wire electrode type have no conventional internal reference solution and reference electrode, but the inner films may be considered to function as the “internal standard solution.” The ion selectivity coefficients and the activity range showing Nernstian response were almost comparable to those of conventional liquid-membrane electrodes. The bilayer-coated ISEs showed insensitivity to O2 and CO2, long-term stability, and little drift. It was also found that the electrode performance is practically unchanged after sterilization in an autoclave. The results demonstrate that the bilayer-coated ISEs examined are promising for the determination of K+, Na+, NH4 +, or Ca2+ activity in biological and environmental systems.  相似文献   

6.
The thermal degradation of waste poly(methyl methacrylate) (PMMA) in the presence of ferric sulfate, cupric sulfate, aluminum sulfate, magnesium sulfate, and barium sulfate was studied by using thermogravimetric analysis (TGA) in air atmosphere. The values of apparent activation energies (Ea) calculated by Flynn-Wall-Ozawa method were found to be in the order of PMMA + Fe2(SO4)3 < PMMA + Al2(SO4)3 < PMMA + MgSO4 < PMMA + CuSO4 < PMMA + BaSO4 < PMMA. The mechanism of catalytic degradation of PMMA in presence of the sulfates was discussed and the results showed that the catalytic effects of sulfates have a relationship with the acidity of their respective metal ions.  相似文献   

7.
A diffusive gradient in thin films technique (DGT) was combined with liquid chromatography (LC) and cold vapor atomic fluorescence spectrometry (CV-AFS) for the simultaneous quantification of four mercury species (Hg2+, CH3Hg+, C2H5Hg+, and C6H5Hg+). After diffusion through an agarose diffusive layer, the mercury species were accumulated in resin gels containing thiol-functionalized ion-exchange resins (Duolite GT73, and Ambersep GT74). A microwave-assisted extraction (MAE) in the presence of 6 M HCl and 5 M HCl (55 °C, 15 min) was used for isolation of mercury species from Ambersep and Duolite resin gels, respectively. The extraction efficiency was higher than 95.0% (RSD 3.5%). The mercury species were separated with a mobile phase containing 6.2% methanol + 0.05% 2-mercaptoethanol + 0.02 M ammonium acetate with a stepwise increase of methanol content up to 80% in the 16th min on a Zorbax C18 reverse phase column. The LODs of DGT–MAE–LC–CV-AFS method were 38 ng L−1 for CH3Hg+, 13 ng L−1 for Hg2+, 34 ng L−1 for C2H5Hg+ and 30 ng L−1 for C6H5Hg+ for 24 h DGT accumulation at 25 °C.  相似文献   

8.
A gas chromatography–tandem mass spectrometric (GC–MS/MS) method has been established for the determination of cyanide in surface water. This method is based on the derivatization of cyanide with 2-(dimethylamino)ethanethiol in surface water. The following optimum reaction conditions were established: reagent dosage, 0.7 g L−1 of 2-(dimethylamino)ethanethiol; pH 6; reaction carried out for 20 min at 60 °C. The organic derivative was extracted with 3 mL of ethyl acetate, and then measured by using GC–MS/MS. Under the established conditions, the detection and quantification limits were 0.02 μg L−1 and 0.07 μg L−1 in 10-mL of surface water, respectively. The calibration curve had a linear relationship relationship with y = 0.7140x + 0.1997 and r2 = 0.9963 (for a working range of 0.07–10 μg L−1) and the accuracy was in a range of 98–102%; the precision of the assay was less than 7% in surface water. The common ions Cl, F, Br, NO3, SO42−, PO43−, K+, Na+, NH4+, Ca2+, Mg2+, Ba2+, Mn4+, Mn2+, Fe3+, Fe2+ and sea water did not interfere in cyanide detection, even when present in 1000-fold excess over the species. Cyanide was detected in a concentration range of 0.07–0.11 μg L−1 in 6 of 10 surface water samples.  相似文献   

9.
Kim DW  Park KW  Yang MH  Kim TH  Mahajan RK  Kim JS 《Talanta》2007,74(2):223-228
The new ion-selective electrodes (ISEs) based on salphenH2 derivatives such as N,N′-(propylenedioxy)benzenebis(salicylideneimine) L1 and N,N′-4,5-(propylenedioxy)benzenebis(3,5-di-tert-butylsalicylideneimine) L2 as cation carriers are developed for a uranyl ion. The combination of these new ionophores with tris(2-ethylhexyl)phosphate (TEHP) as a plasticizer particularly shows near Nernstian slope in the wide concentration range (1.0 × 10−6 to 1.0 × 10−2 M) of UO22+ and is observed well in the pH range from 1.0 to 5.0 with a response time less than 20 s. Since the employed ionophores were confirmed to form well-defined stable 1:1 complexes with UO22+, the observed high selectivity for a uranyl ion over the other cations was attributed to the selective complexation as well as the lipophilic behavior of these ligands especially for L2. The proposed electrodes offered practically low detection limit of 6.5 × 10−7 M and reasonably good end-points within experimental error were obtained when the sensor was used as an indicator electrode for the potentiometric titration.  相似文献   

10.
A robotic method has been established for the determination of bromate in sea water and drinking deep-sea water. Bromate in water was converted into volatile derivative, which was measured with headspace solid-phase micro extraction and gas chromatography–mass spectrometry (HS-SPME GC–MS). Derivatization reagent and the HS-SPME parameters (selection of fibre, extraction/derivatization temperature, heating time and; the morality of HCl) were optimized and selected. Under the established conditions, the detection and the quantification limits were 0.016 μg L−1 and 0.051 μg L−1, respectively, and the intra- and inter-day relative standard deviation was less than 7% at concentrations of 1.0 and 10.0 μg L−1. The calibration curve showed good linearity with r2 = 0.9998. The common ions Cl, NO3, SO42−, HPO42−, H2PO4, K+, Na+, NH4+, Ca2+, Mg2+, Ba2+, Mn4+, Mn2+, Fe3+ and Fe2+ did not interfere even when present in 1000-fold excess over the active species. The method was successfully applied to the determination of bromate in sea water and drinking deep-sea water.  相似文献   

11.
A novel concept for all-plastic and all-solid-state ion-selective electrodes (ISEs) is introduced. Planar, flexible ion-selective electrodes, comprising only polymeric materials, with no internal solution, were obtained. The cast conducting polymer layer (obtained from aqueous suspension) was covered with a solvent polymeric based membrane to obtain a planar all-plastic sensor. The conducting polymer layer served both as electrical contact and as ion-to-electron transducer. To illustrate this concept, the conducting polymer poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate) ions (PEDOT-PSS, Baytron P) was chosen. Due to interaction, analyte cations-poly(4-styrenesulfonate) anions, an extended linear range of potentiometric responses was obtained, with lowered detection limit.As example, Ca2+-selective and K+-selective all-plastic electrodes were fabricated and yielded with high selectivity, near Nernstian slopes and fast responses. The detection limits obtained for Ca2+- and K+-selective sensors were 5 × 10−9 M CaCl2 and 4.4 × 10−7 M KCl, respectively.The possibilities of modifying the conducting polymer-phase composition is highlighted. This method is extremely useful to tune the desired type of responses, and cannot be directly applied for electrochemically deposited conducting polymers.  相似文献   

12.
To date, poly(vinyl chloride) (PVC) is the most used polymer in the design of ion selective electrode (ISE) membranes. This paper is focused on the use of sulfonated poly(ether ether ketone) (SPEEK) as an alternative material to PVC for the design of ISEs. SPEEK of the desired degree of sulfonation is synthesized from poly(ether ether ketone) (PEEK). An NH4+-ISE has been chosen as a model electrode to study the efficiency of SPEEK as polymer matrix of the membrane. The material was evaluated in ionophore free ion exchanger membranes as well as in ion-selective electrodes membranes containing nonactine as ionophore. Analytical performance parameters of the prepared electrodes were evaluated. The electrodes show a slope between 50 and 60 mV dec−1 depending on both the calibration medium and the membrane composition. A linear range of response between 10−4 and 1.0 M and a lifetime of 1-2 months were obtained. The interferences of cations such us Ca2+, Na+, Li+ and K+ over the prepared ISEs are studied as well. Although the plasticizer in the SPEEK based membrane matrix is not necessary, its presence improves the sensibility. This makes SPEEK a good potential choice over alternative membrane matrices reported in the literature and a promising platform for the establishment of membrane components.  相似文献   

13.
The construction and performance characteristics of different phosphate ion-selective electrodes are described. Three types of electrodes are demonstrated, namely screen-printed, carbon paste and the conventional PVC membrane electrodes. The cited electrodes are based on bisthiourea ionophores and show a considerable selectivity towards hydrogenphosphate with Nernstian slopes depending on the type of the electrode and the ionophore used. Matrix compositions of each electrode are optimised on the basis of effects of type and concentration of the ionophore as well as influence of the selected plasticizers. The screen-printed electrodes work satisfactorily in the concentration range 10−5 to 10−2 mol L−1 with anionic Nernstian compliance (32.8 mV/decade activity) and detection limit 4.0 × 10−6 mol L−1. The screen-printed electrodes show fast response time of about 2.2 s and exhibit adequate shelf-life (4 months). The fabricated electrodes can be also successfully used in the potentiometric titration of HPO42− with Ba2+.  相似文献   

14.
A new generation polymeric ionic liquid (PIL), poly(1-4-vinylbenzyl)-3-hexadecylimidazolium bis[(trifluoromethyl)sulfonyl]imide (poly(VBHDIm+ NTf2)), was synthesized and is shown to exhibit impressive selectivity towards the extraction of 12 polycyclic aromatic hydrocarbons (PAHs) from aqueous samples when used as a sorbent coating in direct-immersion solid-phase microextraction (SPME) coupled to gas chromatography (GC). The PIL was imparted with aromatic character to enhance π–π interactions between the analytes and the sorbent coating. For comparison purposes, a PIL with similar structure but lacking the π–π interaction capability, poly(1-vinyl-3-hexadecylimidazolium bis[(trifluoromethyl)sulfonyl]imide) (poly(HDIm+ NTf2)), as well as a commercial polydimethylsiloxane (PDMS) sorbent coating were evaluated and exhibited much lower extraction efficiencies. Extraction parameters, including stir rate and extraction time, were studied and optimized. The detection limits of poly(VBHDIm+ NTf2), poly(HDIm+ NTf2), and PDMS coatings varied between 0.003–0.07 μg L−1, 0.02–0.6 μg L−1, and 0.1–6 μg L−1, respectively. The partition coefficients (log Kfs) of eight PAHs to the three studied fiber coatings were estimated using a static SPME approach. This study represents the first report of analyte partition coefficients to any PIL-based material.  相似文献   

15.
Enass M. Ghoneim 《Talanta》2010,82(2):646-652
A simple and precise square-wave adsorptive cathodic stripping voltammetry (SW-AdCSV) method has been described for simultaneous determination of Mn(II), Cu(II) and Fe(III) in water samples using a carbon paste electrode. In 0.1 mol L−1 acetate buffer (pH 5) containing 50 μmol L−1 of 2-(5′-bromo-2′-pyridylazo)-5-diethylaminophenol (5-Br-PADAP), Mn(II), Cu(II) and Fe(III) were simultaneously determined as metal-complexes with 5-Br-PADAP following preconcentration onto the carbon paste electrode by adsorptive accumulation at +1.0 V (vs. Ag/AgCl/3 M KCl). Insignificant interference from various cations (K+, Na+, Mg2+, Ca2+, Al3+, Bi3+, Sb3+, Se4+, Zn2+, Ni2+, Co2+, Cd2+, Pb2+, V5+, Ti4+ and NH4+), anions (HCO3, Cl, NO3−, SO42− and PO43−) and ascorbic acid was noticed. Limits of detection of 0.066, 0.108 and 0.093 μg L−1 and limits of quantitation of 0.22, 0.36 and 0.31 μg L−1 Mn(II), Cu(II) and Fe(III), respectively, were achieved by the described method. The described stripping voltammetry method was successfully applied for simultaneous determination of Mn(II), Cu(II) and Fe(III) in ground, tap and bottled natural water samples.  相似文献   

16.
The properties of the iron(III) complexes of the ditopic macrocyclic ligand with three aminopropyl pendant arms, L1 = 3,7,11-tris-(3-aminopropyl)-3,7,11,17-tetraazabicyclo[11.3.1]heptadeca-1(17),13,15-triene were investigated in aqueous solution. Potentiometric studies indicated the presence of mononuclear [FeHhL1]h+3 (h = 0–3), and dinuclear [Fe2L1]6+, [Fe2L1(OH)]5+ and [Fe2L1(OH)2]4+ complexes, and their stability constants were determined at 298.2 K and ionic strength 0.10 mol dm−3 in KNO3. The log K values of mononuclear protonated species indicated the consecutive deprotonation of the aminopropyl arms, suggesting the nitrogen donor atoms from the macrocycle as the preferred coordination environment for the first metal centre, and the amines from the pendant arms for the second one. The dinuclear complex is formed at about 85% of the total amount of the metal ion for 2:1 Fe:L1 ratio solutions at pH 4.0–4.5. The log K values of the deprotonation of dinuclear hydrolysed species are consistent with the presence of two water molecules directly bound to the metal centres. Spectroscopic UV–Vis and IR data for 2:1 Fe3+:L1 ratio samples confirmed the existence of dinuclear and hydroxo dinuclear species. EPR spectra of these solutions were interpreted by an equilibrium of two high-spin d5 state of iron(III) species with different rhombic E/D distortions. Electrochemical studies also established the formation of mono- and dinuclear complexes, showing irreversible redox behaviour. The two metal centres on the dinuclear complexes have only weak interactions.  相似文献   

17.
《Analytica chimica acta》2002,459(2):229-234
The ligand 1,4,8-tri(n-octyl)-1,4,8,11-tetraazacyclotetradecane (L1) containing pendant octyl groups has been synthesised. L1 is a tetraazamacrocycle derived from the well-known cyclam unit, and the Ni2+ and Co2+ complexes, [Ni(L1)]2+ and [Co(L1)]2+, have been isolated and characterised. The ability of the nickel(II) and cobalt(II) complexes to act as anion receptors has been studied by using them as ionophores in membrane-based ion-selective electrodes (ISEs). The PVC membrane containing the complex [Ni(L1)]2+ and 2-nitrophenyloctylether as plasticizer shows a Nernstian response against iodide in a concentration range from 1×10−1 to 4×10−5 M I with a detection limit of 1.6×10−5 M I and a slope of 58.6 mV/pI at pH 7 (25 °C). In comparison, the electrode containing [Co(L1)]2+ as ionophore gave a sub-Nernstian slope and a low lifetime. A comparison between the iodide-selective electrode containing [Ni(L1)]2+ and other reported iodide-selective electrodes is also reported.  相似文献   

18.
A novel ‘three-level’ deepened cavitand featuring a significantly sizable portal has been synthesized and its interaction with some transition metal ions has been investigated in THF/H2O binary solvent using fluorescence quenching technique. The results suggest that among the used transition metal ions including Ag+, Cd2+, Cu2+, Fe3+, Cr3+, Hg2+, La3+, Mn2+, Ni2+, Zn2+ and Co2+, only Fe3+ and Cu2+ show good quenching ability. In order to interpret the quenching mechanism, the Stern–Volmer kinetics, and the presence of both the dynamic and static quenching have been discussed. It was found that the simultaneous presence of the sphere-of-action static quenching and dynamic quenching model agrees very well with the experimental results. The limits of detection for Fe3+ and Cu2+ were found to be 2.1 × 10−6 mol L−1 (3σ) and 3.6 × 10−6 mol L−1 (3σ), respectively. Cations with potential interference, such as K+, Na+, Mg2+, Ca2+, Co2+, La3+ and Mn2+ do not have significant effects on the determinations of Fe3+ and Cu2+. This cavitand can be potentially applied as optical sensor for the detection of Fe3+ and Cu2+.  相似文献   

19.
《Electroanalysis》2017,29(3):739-747
Most commercially available fluorous polymers are ill suited for the fabrication of ion‐selective electrode (ISE) membranes. Therefore, we synthesized semifluorinated polymers for this purpose. Ionophore‐free ion‐exchanger electrodes made with these polymers show a selectivity range (≈14 orders of magnitude) that is nearly as wide as found previously for liquid fluorous ion‐exchanger electrodes. These polymers were also used to construct ISE membranes doped with fluorophilic silver ionophores. While the resulting ISEs were somewhat less selective than their fluorous counterparts, the semifluorinated polymers offer the advantage that they can be doped both with fluorophilic ionophores and traditional lipophilic ionophores, such as the silver ionophore Cu(II)‐I (o ‐xylylenebis[N,N ‐diisobutyldithiocarbamate]). We also cross‐linked these polymers, producing very durable membranes that retained broad selectivity ranges. K+ ISEs made with the cross‐linked semifluorinated polymer and the ionophore valinomycin showed selectivities similar to those of PVC membrane ISEs but with a superior thermal stability, the majority of the electrodes still giving a theoretical (Nernstian) response after exposure to a boiling aqueous solution for 10 h.  相似文献   

20.
Chemosensor based on Schiff base molecules (1, 2) were synthesized and demonstrated the selective fluoro/colorimetric sensing of multiple metal ions (Mn2+, Zn2+ and Cd2+) in acetonitrile–aqueous solution. Both 1 and 2 showed a highly selective naked-eye detectable colorimetric change for Mn2+ ions at 10−7 M. Fluorescence sensing studies of 1 and 2 exhibited a strong fluorescence enhancement (36 fold) selectively upon addition of Zn2+ (10−7 M, λmax = 488 nm). Fluorescence titration and single crystal X-ray analysis confirmed the formation of 1:1 molecular coordination complex between 1 and Zn2+. Interestingly, a rare phenomenon of strong second turn-on fluorescence (190 fold, λmax = 466 nm) was observed by the addition of Cd2+ (10−7 M) into 1 + Zn2+ or Zn2+ (10−7 M) into 1 + Cd2+. Importantly both 1 and 2 exhibited different fluorescence λmax with clearly distinguishable color for both Zn2+ and Cd2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号