首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structures of Os3(CO)11(PR3) with R=F, OPh, Et, p-C6H4Me, o-C6H4Me, p-C6H4(CF3) and C6H11, and with PR3=P(OCH2)3CMe have been determined. The Os–Os bond lengths in these compounds are compared to the Os–Os lengths for the other structures of Os3(CO)11(PR3) clusters reported in the literature. In most cases, the Os–Os bond length remote from the P ligand [range, 2.8666(4)–2.9044(4) Å] and that in the pseudo-trans position [range, 2.8712(5)–2.900(1) Å] show little variation as the steric and electronic properties of the P ligand are varied. The Os–Os length cis to PR3 shows more variation [range, 2.879(1)–2.9429(4) Å] and is sensitive to both the size and the -donor/-acceptor properties of the PR3 ligand: larger or better donor PR3 ligands cause an increase in the Os–Os bond length. The Os–P distances [range, 2.15(2)–2.478(1) Å] show a similar dependence on the steric and electronic properties of the PR3 ligand.  相似文献   

2.
Lanthanide based single molecular magnets (SMMs), particularly dysprocenium based SIMs, are well known for their high energy barrier for spin reversal (Ueff) and blocking temperatures (TB). Enhancing these two parameters and at the same time obtaining ambient stability is key to realising end-user applications such as compact storage or as qubits in quantum computing. In this work, by employing an array of theoretical tools (DFT, ab initio CASSCF and molecular dynamics), we have modelled six complexes [(η5-corannulene)Dy(Cp)] (1), [(η5-corannulene)Dy(C6H6)] (2), [(η6-corannulene)Dy(Cp)] (3), [(η6-corannulene)Dy(C6H6)] (4), [(exo5-corannulene)Dy(endo5-corannulene)] (5), and [(endo5-corannulene)Dy(endo5-corannulene)] (6) containing corannulene as a capping ligand to stabilise Dy(iii) half-sandwich complexes. Our calculations predict a strong axiality exerted by the Dy–C interactions in all complexes. Ab initio calculations predict a very large barrier height for all six molecules in the order 1 (919 cm−1) ≈ 3 (913 cm−1) > 2 (847 cm−1) > 4 (608 cm−1) ≈ 5 (603 cm−1) ≈ 6 (599 cm−1), suggesting larger barrier heights for Cp ring systems, followed by six-membered arene systems and then corannulene. DFT based molecular dynamics calculations were performed on complexes 3, 5 and 6. For complexes 3 and 5, the geometries that are dynamically accessible are far fewer. The range of Ueff computed for molecular dynamics snapshots is high, indicating a possibility of translating the large Ueff obtained into attractive blocking temperatures in these complexes, but the converse is found for 6. Furthermore, an in-depth C–H bond vibrational analysis performed on complex 3 suggests that the vibration responsible for reducing the blocking temperature in dysprocenium SIMs is absent here as the C–H bonds are stronger and corannulene steric strain prevents the C(Cp)–Dy–C(Cor) bending. As [(η6-corannulene)TM(X)]+ (TM = Ru, Zr, Os, Rh, Ir and X = C5Me5, C6Me6) are known, the predictions made here have a higher prospect of yielding stability under ambient conditions, a very large Ueff value and a high blocking temperature – a life-giving combination to new generation SMMs.

Bringing half-sandwich Dy(iii) SIMs under the umbrella of corannulene was found to offer stability, greater barrier height and may offer higher blocking temperatures.  相似文献   

3.
The Voronoi–Dirichlet polyhedra (VDP) and the method of intersecting spheres were used to perform crystal-chemical analysis of compounds containing complexes [Os a X b ] z(X = F, Cl, Br, I). Atoms of Os(V) at X = F and Cl, of Os(IV) at X = Cl, Br, and of Os(III) at X = Br were found to exhibit a coordination number of 6 with respect to the halogen atoms and to form OsX6octahedra. The coordination polyhedra of Os(III) for X = Cl, I are square pyramids OsX4. Each Os(III) atom forms one Os–Os bond; as a consequence, the OsBr6octahedra share a face in forming Os2Br3– 9complexes, while the OsX4pyramids (X = Cl, I) dimerize to produce [X4Os–OsX4]2–ions. The influence of the valence state of the Os atoms and of the nature of the halogen atoms on the composition and structure of the complexes formed and some characteristics of the coordination sphere of Os were considered.  相似文献   

4.
Addition of [UI2(THF)3(μ-OMe)]2·THF (2·THF) to THF solutions containing 6 equiv. of K[C14H10] generates the heteroleptic dimeric complexes [K(18-crown-6)(THF)2]2[U(η6-C14H10)(η4-C14H10)(μ-OMe)]2·4THF (118C6·4THF) and {[K(THF)3][U(η6-C14H10)(η4-C14H10)(μ-OMe)]}2 (1THF) upon crystallization of the products in THF in the presence or absence of 18-crown-6, respectively. Both 118C6·4THF and 1THF are thermally stable in the solid-state at room temperature; however, after crystallization, they become insoluble in THF or DME solutions and instead gradually decompose upon standing. X-ray diffraction analysis reveals 118C6·4THF and 1THF to be structurally similar, possessing uranium centres sandwiched between bent anthracenide ligands of mixed tetrahapto and hexahapto ligation modes. Yet, the two complexes are distinguished by the close contact potassium-arenide ion pairing that is seen in 1THF but absent in 118C6·4THF, which is observed to have a significant effect on the electronic characteristics of the two complexes. Structural analysis, SQUID magnetometry data, XANES spectral characterization, and computational analyses are generally consistent with U(iv) formal assignments for the metal centres in both 118C6·4THF and 1THF, though noticeable differences are detected between the two species. For instance, the effective magnetic moment of 1THF (3.74 μB) is significantly lower than that of 118C6·4THF (4.40 μB) at 300 K. Furthermore, the XANES data shows the U LIII-edge absorption energy for 1THF to be 0.9 eV higher than that of 118C6·4THF, suggestive of more oxidized metal centres in the former. Of note, CASSCF calculations on the model complex {[U(η6-C14H10)(η4-C14H10)(μ-OMe)]2}2− (1*) shows highly polarized uranium–arenide interactions defined by π-type bonds where the metal contributions are primarily comprised by the 6d-orbitals (7.3 ± 0.6%) with minor participation from the 5f-orbitals (1.5 ± 0.5%). These unique complexes provide new insights into actinide–arenide bonding interactions and show the sensitivity of the electronic structures of the uranium atoms to coordination sphere effects.

Use of Chatt metal-arene protocols with uranium leads to the synthesis of the first well-characterized, unsupported actinide–arenide sandwich complexes. The electronic structures of the actinide centres show a key sensitivity to ion pairing effects.  相似文献   

5.
The complexes (OC)4(CNBu t )ReOs(CO)3(CNBu t )Os(CO)3(CNBu t )Re(CNBu t )(CO)4 (A) and (OC)3(CNBu t )2ReOs(CO)4Os(CO)3(CNBu t )Re(CNBu t )(CO)4 (B) have been isolated in low yield from the reaction of Os(CO)3(CNBu t )2 with Re2(-H)(--C2H3)(CO)8 in hexane at room temperature. Both compounds have approximately linear ReOs2Re chains. The Re–Os lengths are in the range 2.9311(7)–2.952(1) Å the Os–Os lengths are 2.875(1) (A) and 2.8759(7) Å (B).  相似文献   

6.
Neutral [Ru(η6-arene)Cl2{Ph2P(CH2)3SPh-κP}] (arene = benzene, indane, 1,2,3,4-tetrahydronaphthalene: 2a, 2c and 2d) and cationic [Ru(η6-arene)Cl(Ph2P(CH2)3SPh-κPS)]X complexes (arene = mesitylene, 1,4-dihydronaphthalene; X = Cl: 3b, 3e; arene = benzene, mesitylene, indane, 1,2,3,4-tetrahydronaphthalene, and 1,4-dihydronaphthalene; X = PF6: 4a–4e) complexes were prepared and characterized by elemental analysis, IR, 1H, 13C and 31P NMR spectroscopy and also by single-crystal X-ray diffraction analyses. The stability of the complexes has been investigated in DMSO. Complexes have been assessed for their cytotoxic activity against 518A2, 8505C, A253, MCF-7 and SW480 cell lines. Generally, complexes exhibited activity in the lower micromolar range; moreover, they are found to be more active than cisplatin. For the most active ruthenium(II) complex, 4b, bearing mesitylene as ligand, the mechanism of action against 8505C cisplatin resistant cell line was determined. Complex 4b induced apoptosis accompanied by caspase activation.  相似文献   

7.
Summary The preparation and properties of cationic arenerhodium(I) complexes of general formula [Rh {P(OMe)3}(6-arene)]A [arene=C6H6–nMen (n=0, 1, 2, 3, 4 or 6); A=ClO 6 , PF 6 ] are described. The coordinated arene is dissociated in (CD3)2 CO or DCCl3 solution and this dissociation decreases with increased methyl substitution of the arene ligand.The ability of these cationic complexes to function as an intermediate for the synthesis of other rhodium(I) complexes by displacement of the coordinated arene with or -donor ligands has been studied.  相似文献   

8.
Summary The crystal structure of the caesium salt of [OsO2(CN)4]2– has been determined from three-dimensional x-ray diffraction data. The orange crystals are monoclinic, space group C2/m with a=12.125(2), b=8.284(1), c=5.457(1) Å, =102.01(1)° with two molecules per unit cell. The final R value using 778 observed reflections and anisotropic thermal parameters for all atoms was 0.028. The [OsO2(CN)4]2– ion has an octahedral geometry. Bond distances: Os=O=1.750(8)Å and Os–C=2.093(9)Å.  相似文献   

9.
The functionalization of pentaphosphaferrocene [Cp*Fe(η5-P5)] (1) with cationic group 13–17 electrophiles is shown to be a general synthetic strategy towards P–E bond formation of unprecedented diversity. The products of these reactions are dinuclear [{Cp*Fe}2{μ,η5:5-(P5)2EX2}][TEF] (EX2 = BBr2 (2), GaI2 (3), [TEF] = [Al{OC(CF3)3}4]) or mononuclear [Cp*Fe(η5-P5E)][X] (E = CH2Ph (4), CHPh2 (5), SiHPh2 (6), AsCy2 (7), SePh (9), TeMes (10), Cl (11), Br (12), I (13)) complexes of hetero-bis-pentaphosphole ((cyclo-P5)2R) or hetero-pentaphosphole ligands (cyclo-P5R), the aromatic all-phosphorus analogs of prototypical cyclopentadienes. Further, modifying the steric and electronic properties of the electrophile has a drastic impact on its reactivity and leads to the formation of [Cp*Fe(μ,η5:2-P5)SbICp′′′][TEF] (8) which possesses a triple-decker-like structure. X-ray crystallographic characterization reveals the slightly twisted conformation of the cyclo-P5R ligands in these compounds and multinuclear NMR spectroscopy confirms their integrity in solution. DFT calculations shed light on the bonding situation of these compounds and confirm the aromatic character of the pentaphosphole ligands on a journey across the p-block.

The reactivity of cationic electrophiles towards pentaphosphaferrocene [Cp*Fe(ƞ5-P5)] is explored. We report P–E bond formation for electrophiles across the p-block, producing coordination complexes with unprecedented hetero-bispentaphosphole and hetero-pentaphosphole ligands.  相似文献   

10.
The structure, bonding, and reactivity of small, highly unsaturated ring systems is of fundamental interest for inorganic and organic chemistry. Four-membered metallacyclobuta-2,3-dienes, also referred to as metallacycloallenes, are among the most exotic examples for ring systems as these represent organometallic analogs of 1,2-cyclobutadiene, the smallest cyclic allene. Herein, the synthesis of the first examples of 1-zirconacyclobuta-2,3-dienes of the type [Cp′2Zr(Me3SiC3SiMe3)] (Cp′2 = rac-(ebthi), (ebthi = 1,2-ethylene-1,1′-bis(η5-tetrahydroindenyl)) (2a); rac-Me2Si(thi)2, thi = (η5-tetrahydroindenyl), (2b)) is presented. Both complexes undergo selective thermal C–H activation at the 7-position of the ansa-cyclopentadienyl ligand to produce a new type of “tucked-in” zirconocene system, 3a and 3b, that possesses a η3-propargyl/allenyl ligand. Both types of complexes react with carbonyl compounds, producing enynes in the case of 2a and 2b, as well as η1-allenyl complexes for 3a and 3b. Computational analysis of the structure and bonding of 2a and 3a reveals significant differences to a previously described related Ti complex. All complexes were fully characterised, including X-ray crystallography and experimental results were supported by DFT analysis.

A detailed study of structure, bonding and reactivity of new 1-zirconacyclobuta-2,3-dienes is presented in comparison to a lighter Ti analog. We found a unique C–H activation at the widely used rac-(ebthi) ligand for that only occurs for Zr.  相似文献   

11.
A chelation-assisted oxidative addition of gold(i) into the C–C bond of biphenylene is reported here. The presence of a coordinating group (pyridine, phosphine) in the biphenylene unit enabled the use of readily available gold(i) halide precursors providing a new, straightforward entry towards cyclometalated (N^C^C)- and (P^C)-gold(iii) complexes. Our study, combining spectroscopic and crystallographic data with DFT calculations, showcases the importance of neighboring, weakly coordinating groups towards the successful activation of strained C–C bonds by gold.

Pyridine and phosphine directing groups promote the C–C activation of biphenylene by readily available gold(i) halides rendering a new entry to (N^C^C)- and (P^C)-gold(iii) species.

Activation of C–C bonds by transition metals is challenging given their inertness and ubiquitous presence alongside competing C–H bonds.1 Both the intrinsic steric hindrance as well as the highly directional character of the p orbitals involved in the σC–C bond impose a high kinetic barrier for this type of processes.2,3 Biphenylene, a stable antiaromatic system featuring two benzene rings connected via a four-membered cycle, has found widespread application in the study of C–C bond activation. Since the seminal report from Eisch et al. on the oxidative addition of a nickel(0) complex into the C–C bond of biphenylene,4 several other late transition metals have been successfully applied in this context.5 Interestingly, despite the general reluctance of gold(i) to undergo oxidative addition,6 its oxidative insertion into the C–C bond of biphenylene was demonstrated in two consecutive reports by the groups of Toste7a and Bourissou,7b respectively. The high energy barrier associated with the oxidation of gold could be overcome by the utilization of gold(i) precursors bearing ligands that exhibit either a strongly electron-donating character (e.g. IPr = [1,3-bis(2,6-diisopropylphenyl)imidazole-2-ylidene])7a or small bite angles (e.g. DPCb = diphosphino-carborane).7b,8 In line with these two approaches, more sophisticated bidentate (N^C)- and (P^N)-ligated gold(i) complexes have also been shown to aid the activation of biphenylene at ambient temperature (Scheme 1a).7c,dOpen in a separate windowScheme 1(a) Previous reports on oxidative addition of ligated gold(i) precursors onto biphenylene. (b) This work: pyridine- and phosphine-directed C–C bond activation of biphenylene by commercially available gold(i) halides.In this context, we hypothesized that the oxidative insertion of gold(i) into the C–C bond of biphenylene could be facilitated by the presence of a neighboring chelating group.9 This approach would not only circumvent the need for gold(i) precursors featuring strong σ-donor or highly tailored bidentate ligands but also offer a de novo entry towards interesting, less explored ligand templates. However, recent work by Breher and co-workers showcased the difficulty of achieving such a transformation.10Herein, we report the oxidative insertion of readily available gold(i) halide precursors into the C–C bond of biphenylene. The appendage of both pyridine and phosphine donors in close proximity to the σC–C bond bridging the two aromatic rings provides additional stabilization to the metal center and results in a de novo entry to cyclometalated (N^C^C)- and (P^C)gold(iii) complexes (Scheme 1b).Our study commenced with the preparation of 5-chloro-1-pyridino-biphenylene system 2via Pd-catalyzed Suzuki cross coupling reaction between 2-bromo-3-methylpyridine and 2-(5-chlorobiphenylen-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 1 (Scheme 2).11 To our delight, the reaction of 2 with gold(i) iodide in toluene at 130 °C furnished complex κ3-(N^C^C)Au(iii)–I 3 in 60% yield.12,13 Complex 3 was isolated as yellow plate-type crystals from the reaction mixture and its molecular structure was unambiguously assigned by NMR spectroscopy, high-resolution mass spectrometry (HR-MS) and crystallographic analysis. Complex 3 exhibits the expected square-planar geometry around the metal center, with a Au–I bond length of 2.6558(3) Å.14 The choice of a neutral weakly bound gold(i)-iodide precursor is key for a successful reaction outcome: similar reactions in the presence of [(NHC)AuCl + AgSbF6] failed to deliver the desired biscyclometalation adducts, as reported by Breher et al. in ref. 10. The oxidative insertion of gold(i) iodide into the four-membered ring of pyridino-substituted biphenylene provides a novel and synthetically efficient entry to κ3-(N^C^C)gold(iii) halides. These species have recently found widespread application as precursors for the characterization of highly labile, catalytically relevant gold(iii) intermediates,15ad as well as for the preparation of highly efficient emitters in OLEDs.15eg Previous synthetic routes towards these attractive biscyclometalated gold(iii) systems involved microwave-assisted double C–H functionalization reactions that typically proceed with low to moderate yields.15aOpen in a separate windowScheme 2Synthesis of complex 3via oxidative addition of Au(i) into the C–C bond of pyridine-substituted biphenylene. X-ray structures of complex 3 with atoms drawn using 50% probability ellipsoids. Hydrogen atoms have been omitted for clarity. Additional selected bond distances [Å]: N–Au = 2.126(2), C1–Au = 1.973(2), C2–Au = 2.025(2), Au–I = 2.6558(3) and bond angles [deg]: N–Au–I = 99.25(6), N–Au–C1 = 79.82(9), C1–Au–C2 = 81.2(1), C2–Au–I = 99.73(8). For experimental details, see ESI.Encouraged by the successful results obtained with the pyridine-substituted biphenylene and considering the prominent use of phosphines in gold chemistry,6,16 we wondered whether the same reactivity would be observed for a P-containing system. To this end, both adamantyl- and tert-butyl-substituted phosphines were appended in C1 position of the biphenylene motif. Starting from 5-chlorobiphenylene-1-carbaldehyde 4, phosphine-substituted biphenylenes 5a and 5b could be accessed in 3 steps (aldehyde reduction to the corresponding alcohol, Appel reaction and nucleophilic displacement of the corresponding benzylic halide) in 64 and 57% overall yields, respectively.13 The reactions of 5a and 5b with commercially available gold(i) halides (Me2SAuCl and AuI) furnished the corresponding mononuclear complexes 7a–b and 8a–b, respectively (Scheme 3).13 All these complexes were fully characterized and the structures of 7a, 7b and 8a were unambiguously characterized by X-ray diffraction analysis.13 Interestingly, the nature of the halide has a clear effect on the chemical shift of the phosphine ligand so that a Δδ of ca. 5 ppm can be observed in the 31P NMR spectra of 7a–b (Au–Cl) compared to 8a–b (Au–I), the latter being the more deshielded. The Au–X bond length is also impacted, with a longer Au–I distance (2.5608(1) Å for 8a) compared to that measured in the Au–Cl analogue (2.2941(7) Å for 7a) (Δd = 0.27 Å).13Open in a separate windowScheme 3Synthesis and reactivity of complexes 7a–b, 8a–b, 9 and 10. X-ray structure of complexes 11b, 12 and 14 with atoms drawn using 50% probability ellipsoids. Hydrogen atoms have been omitted for clarity. For experimental details and X-ray structures see ESI.Despite numerous attempts to promote the C–C activation in these complexes,10,13 all reactions resulted in the formation of highly stable cationic species 11a–b and 12, which could be easily isolated from the reaction media. In the case of cationic mononuclear-gold(i) complexes 11, a ligand scrambling reaction in which the chloride ligand is replaced by a phosphine in the absence of a scavenger, a process previously described for gold(i) species, can be used to justify the reaction outcome.17 The formation of dinuclear gold complex 12 can be ascribed to the combination of a strong aurophilic interaction between the two gold centers (Au–Au = 2.8874(4) Å) and the stabilizing η2-coordination of the metal center to the aromatic ring of biphenylene. Similar η2-coordinated gold(i) complexes have been reported but, to the best of our knowledge, only as mononuclear species.18Taking into consideration the observed geometry of complexes 7a–b in the solid state,13 the facile formation of stable cationic species 11 and 12 and the lack of reactivity of the gold(i) iodides 8a–b, we hypothesized that the free rotation around the C–P bond was probably restricted, placing the gold(i) center away from the biphenylene system and thus preventing the desired oxidative insertion reaction. To overcome this problem, we set out to elongate the arm bearing the phosphine unit with an additional methylene group, introduced via a Wittig reaction from compound 4 to yield ligand 6, prepared in 4 steps in 27% overall yield. Coordination with Me2SAuCl and AuI resulted in gold(i) complexes 9 and 10, respectively (Scheme 3). The structure of 9 was unambiguously assigned by X-ray diffraction analysis and a similar environment around the metal center to that determined for complex 7a was observed for this complex.13With complexes 9 and 10 in hand, we explored their reactivity towards C–C activation of the four-membered ring of biphenylene.19 After chloride abstraction and upon heating at 100 °C for 5 hours, ring opening of the biphenylene system was observed for complex 9. Interestingly, formation of mono-cyclometalated adduct 13 was exclusively observed (the structure of 13 was confirmed by 1H, 13C, 31P, 19F, 11B and 2D NMR spectroscopy and HR-MS).13 The solvent appears to play a major role in this process, as performing the reaction in non-chlorinated solvents resulted in stable cationic complexes similar to 11.13,20,21 The presence of adventitious water is likely responsible for the formation of the monocyclometalated (P^C)gold(iii) complex 13 as when the reaction was carried out in C2H4Cl2 previously treated with D2O, the corresponding deuterated adduct 13-d could be detected in the reaction media. These results showcase the difficulties associated with the biscyclometalation for P-based complexes as well as the labile nature of the expected biscyclometalated adducts. Interestingly though, these processes can be seen as a de novo entry towards relatively underexplored (P^C)gold(iii) species.22The C–C activation was further confirmed by X-ray diffraction analysis of the phosphonium salt 14, which arise from the reductive elimination at the gold(iii) center in 13 upon exchange of the BF4 counter-anion with the weakly coordinating sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (NaBArF).13,23 The phosphorus atom is four-coordinate, with weak bonding observed to the distant counter-anion and a distorted tetrahedral geometry (C1–P–C2 = 95.05(17), C2–P–C3 = 112.1(1), C3–P–C4 = 116.6(1), C4–P–C1 = 107.4(2) deg). These results represent the third example in which the C(sp2)–P bond reductive elimination at gold(iii) has been reported.24Further, it is important to note that, in contrast to the reactivity observed for the pyridine-substituted biphenylene, neither P-coordinated gold(i) iodo complexes 8a, 8b nor 10 reacted to give cyclometalated products despite prolonged heating, which highlights the need for highly reactive cationized gold(i) species to undergo oxidative addition when phosphine ligands are flanking the C–C bond.13To get a deeper understanding on the observed differences in reactivity for the N- vs. P-based directing groups, ground- and transition-state structures for the oxidative insertion of gold(i) halides in C1-substituted biphenylenes were computed by DFT calculations. The reactions of Py-substituted 2 with AuI to give 3 (I) and those of P-substituted 7a (II) and 9 (III) featuring the cationization of the gold(i) species were chosen as models for comparative purposes with the experimental conditions (Fig. 1 and S1–S10 in the ESI).25–27 The computed activation energies for the three processes are in good agreement with the experimental data. The pyridine-substituted biphenylene I exhibits the lowest activation barrier for the oxidative insertion process (ΔG = 34.4 kcal mol−1). The reaction on the phosphine-substituted derivatives II and III proved to be, after cationization of the corresponding gold(i) halide complexes (II-BF4, III-BF4) higher in energy (ΔG = 39.6 and 46.3 kcal mol−1 respectively), although the obtained values do not rule out the feasibility of the C–C activation process. The transition state between I and I′ exhibits several interesting geometrical features: (a) the biphenylene is significantly bent, (b) the cleavage of the C–C bond is well advanced (dC–C = 1.898 Å in TSIvs. dC–C = 1.504 Å in I), and (c) the two C and the I atoms form a Y-shape around gold with minimal coordination from the pyridine (dN–Au = 2.742 Å in TSIvs. dN–Au = 2.093 Å in I and 2.157 Å in I′, respectively). The transition-state structures found for the P-based ligands (TSII and TSIII) also show an elongation of the C–C bond and display a bent biphenylene. However, much shorter P–Au distances (dP–Au = 2.330 Å for TSII and 2.314 Å for TSIII) can be observed compared to the pyridine-based system, as expected due to the steric and electronic differences between these two coordinating groups. Analogously, longer C–Au distances were also found for the P-based systems (dC1–Au = 2.152 Å for TSIvs. 2.235 Å and 2.204 Å for TSII and TSIII; dC2–Au = 2.143 Å for TSIvs. 2.219 Å and 2.162 Å for TSII and TSIII), with a larger deviation of square planarity for Au in TSIII compared to TSII.28,29 These results suggest that, provided the appropriate distance to the C–C bond is in place, the strong coordination of phosphorous to the gold(i) center does not prevent the C–C activation of biphenylene but other reactions (i.e. formation of diphosphine gold(i) cationic species, protodemetalation) can outcompete the expected biscyclometalation process. In contrast, a weaker donor such as pyridine offers a suitable balance bringing the gold in close proximity to the C–C bond and enables both the oxidative cleavage as well as the formation of the double metalation product.Open in a separate windowFig. 1Energy profile (ΔG and ΔG in kcal mol−1), optimized structures, transition states computed at the IEFPCM (toluene/1,2-dichloroethane)-B3PW91/DEF2QZVPP(Au,I)/6-31++G(d,p)(other atoms) level of theory for the C–C activation of biphenylene with gold(i) iodide from I and gold(i) cationic from II and III. Computed structures of the transition states (TSI, TSII and TSIII) and table summarizing relevant distances.  相似文献   

12.
While alkylperoxomanganese(iii) (MnIII–OOR) intermediates are proposed in the catalytic cycles of several manganese-dependent enzymes, their characterization has proven to be a challenge due to their inherent thermal instability. Fundamental understanding of the structural and electronic properties of these important intermediates is limited to a series of complexes with thiolate-containing N4S ligands. These well-characterized complexes are metastable yet unreactive in the direct oxidation of organic substrates. Because the stability and reactivity of MnIII–OOR complexes are likely to be highly dependent on their local coordination environment, we have generated two new MnIII–OOR complexes using a new amide-containing N5 ligand. Using the 2-(bis((6-methylpyridin-2-yl)methyl)amino)-N-(quinolin-8-yl)acetamide (H6Medpaq) ligand, we generated the [MnIII(OOtBu)(6Medpaq)]OTf and [MnIII(OOCm)(6Medpaq)]OTf complexes through reaction of their MnII or MnIII precursors with tBuOOH and CmOOH, respectively. Both of the new MnIII–OOR complexes are stable at room-temperature (t1/2 = 5 and 8 days, respectively, at 298 K in CH3CN) and capable of reacting directly with phosphine substrates. The stability of these MnIII–OOR adducts render them amenable for detailed characterization, including by X-ray crystallography for [MnIII(OOCm)(6Medpaq)]OTf. Thermal decomposition studies support a decay pathway of the MnIII–OOR complexes by O–O bond homolysis. In contrast, direct reaction of [MnIII(OOCm)(6Medpaq)]+ with PPh3 provided evidence of heterolytic cleavage of the O–O bond. These studies reveal that both the stability and chemical reactivity of MnIII–OOR complexes can be tuned by the local coordination sphere.

A pair of room-temperature-stable MnIII–alkylperoxo complexes were characterized and shown to oxidize PPh3. Thermal decomposition studies provide evidence of both homolysis and heterolysis of the MnIII–alkylperoxo O–O bond.  相似文献   

13.
We designed and synthesized a heteroleptic osmium(ii) complex with two different tridentate ligands, Os. Os can absorb the full wavelength range of visible light owing to S–T transitions, and this was supported by TD-DFT calculations. Excitation of Os using visible light of any wavelength generates the same lowest triplet metal-to-ligand charge-transfer excited state, the lifetime of which is relatively long (τem = 40 ns). Since excited Os could be reductively quenched by 1,3-dimethyl-2-(o-hydroxyphenyl)-2,3-dihydro-1H-benzo[d]imidazole, Os displays high potential as a panchromatic photosensitizer. Using a combination of Os and a ruthenium(ii) catalyst, CO2 was photocatalytically reduced to HCOOH via irradiation with 725 nm light, and the turnover number reached 81; irradiation with light at λex > 770 nm also photocatalytically induced HCOOH formation. These results clearly indicate that Os can function as a panchromatic redox photosensitizer.

The osmium(ii) complex functioned as a panchromatic photosensitizer and drove CO2 reduction.  相似文献   

14.
The reactivity of the tetrahedral dipnictogen complexes [{CpMo(CO)2}2(μ,η22-EE′)] (E, E′ = P, As, Sb, Bi; “Mo2EE′”) towards different one-electron oxidation agents is reported. Oxidation with [Thia][TEF] (Thia+ = C12H8S2+; TEF = Al{OC(CF3)3}4) leads to the selective formation of the radical monocations [Mo2EE′]˙+, which immediately dimerize to the unprecedented dicationic E2E′2 ligand complexes [{CpMo(CO)2}442222-E′EEE′)]2+via E–E bond formation. Single crystal X-ray diffraction revealed that, in the case of Mo2PAs and Mo2PSb, P–P bond formation occurs yielding zigzag E2P2 (E = As (1), Sb (2)) chains, whereas Mo2SbBi forms a Sb2Bi2 (5) cage, Mo2AsSb an unprecedented As2Sb2 unit representing an intermediate stage between a chain- and a cage-type structure, and Mo2AsBi a novel planar As2Bi2 (4a) cycle. Therefore, 1–5 bear the first substituent-free, dicationic hetero-E4 ligands, stabilized by transition metal fragments. Furthermore, in the case of Mo2AsSb, the exchange of the counterion causes changes in the molecular structure yielding an unusual, cyclic As2Sb2 ligand. The experimental results are corroborated by DFT calculations.

Unique dicationic hetero-tetrapnictogen E2E′2 (E ≠ E′ = P, As, Sb, Bi) chains and cages are obtained via oxidation of the tetrahedranes [{CpMo(CO)2}2(μ,η22-EE′)]. Exchange of the counterion causes an unusual cyclization of the As2Sb2 ligand.  相似文献   

15.
A dinickel(0)–N2 complex, stabilized with a rigid acridane-based PNP pincer ligand, was studied for its ability to activate C(sp2)–H and C(sp2)–O bonds. Stabilized by a Ni–μ–N2–Na+ interaction, it activates C–H bonds of unfunctionalized arenes, affording nickel–aryl and nickel–hydride products. Concomitantly, two sodium cations get reduced to Na(0), which was identified and quantified by several methods. Our experimental results, including product analysis and kinetic measurements, strongly suggest that this C(sp2)–H activation does not follow the typical oxidative addition mechanism occurring at a low-valent single metal centre. Instead, via a bimolecular pathway, two powerfully reducing nickel ions cooperatively activate an arene C–H bond and concomitantly reduce two Lewis acidic alkali metals under ambient conditions. As a novel synthetic protocol, nickel(ii)–aryl species were directly synthesized from nickel(ii) precursors in benzene or toluene with excess Na under ambient conditions. Furthermore, when the dinickel(0)–N2 complex is accessed via reduction of the nickel(ii)–phenyl species, the resulting phenyl anion deprotonates a C–H bond of glyme or 15-crown-5 leading to C–O bond cleavage, which produces vinyl ether. The dinickel(0)–N2 species then cleaves the C(sp2)–O bond of vinyl ether to produce a nickel(ii)–vinyl complex. These results may provide a new strategy for the activation of C–H and C–O bonds mediated by a low valent nickel ion supported by a structurally rigidified ligand scaffold.

A structurally rigidified nickel(0) complex was found to be capable of cleaving both C(sp2)–H and C(sp2)–O bonds.  相似文献   

16.
Treatment of the side-on tungsten alkyne complex of ethinylethyl ether [Tp*W(CO)22-C,C′-HCCOCH2CH3)]+ {Tp* = hydridotris(3,4,5-trimethylpyrazolyl)borate} (2a) with n-Bu4NI afforded the end-on ketenyl complex [Tp*W(CO)21-HCCO)] (4a). This formal 16 ve complex bearing the prototype of a ketenyl ligand is surprisingly stable and converts only under activation by UV light or heat to form a dinuclear complex [Tp*2W2(CO)4(μ-CCH2)] (6). The ketenyl ligand in complex 4a underwent a metal template controlled cyclization reaction upon addition of isocyanides. The oxametallacycles [Tp*W(CO)22-C,O-C(NHXy)C(H)C(Nu)O}] {Nu = OMe (7), OEt (8), N(i-Pr)2 (9), OH (10), O1/2 (11)} were formed by coordination of Xy-NC (Xy = 2,6-dimethylphenyl) at 4a and subsequent migratory insertion (MI) into the W-ketenyl bond. The resulting intermediate is susceptible to addition reactions with protic nucleophiles. Compounds 2a-PF6, 4a/b, and 7–11 were fully characterized including XRD analysis. The cyclization mechanism has been confirmed both experimentally and by DFT calculations. In cyclic voltammetry, complexes 7–9 are characterized by a reversible W(ii)/W(iii) redox process. The dinuclear complex 11 however shows two separated redox events. Based on cyclic voltammetry measurements with different conducting electrolytes and IR spectroelectrochemical (SEC) measurements the W(ii)/W(iii) mixed valent complex 11+ is assigned to class II in terms of the Robin-Day classification.

The prototype ketenyl ligand is bound end-on despite a formal 16 valence electron count at the metal. This situation opens a reaction pathway for a multicomponent cyclization centred on the migration of the ketenyl ligand.  相似文献   

17.
The Voronoi–Dirichlet polyhedra (VDP) and the method of intersecting spheres were used to perform a crystal-chemical analysis of compounds whose structures contain Os atoms surrounded by chalcogen atoms. Depending on the valence state, Os atoms bind four to seven X atoms (X = O, S, Se, Te) forming OsX n coordination polyhedra which can be tetrahedra (n = 4), trigonal bipyramids or square pyramids (n = 5), octahedra (n = 6), or pentagonal bipyramids (n = 7). In some compounds, pairs of OsO6 octahedra share edges to form Os–Os bonds. The influence of the Os valence state and the nature of the chalcogen atom on the composition and structure of the [Os a X b ] groups is discussed. On the basis of analysis of the crystal-structural data from the standpoint of the 18-electron rule, dependences of the Os–O and Os–Os bond orders on the bond lengths are proposed.  相似文献   

18.
Based on the well-defined five-membered aryl gold(iii) complexes, [Au(tpy)X2] (3a and 3b) and [AuBr(Ph)(tpy)] (7), as well as the aryl gold(iii) complex [AuCl2(Ph)(tpy)] (8) (tpy = 2-(o-tolyl)pyridine) as reliable models, we present a detailed study of the mechanism for gold(iii)-catalyzed oxidative cross-coupling reactions between cycloaurable arenes and arylboronic acids. Here we report the direct evidence for a mechanistic proposal including arene C–H activation, transmetallation and biaryl reductive elimination. The chelation-assisted C–H activation strategy has been used for the development of the gold(iii)-catalyzed C–H bond arylation of arenes with aryl reagents to forge extended π-conjugated systems.  相似文献   

19.
A series of five ruthenium complexes containing triphenyl phosphine groups known to enhance both cellular penetration and photoinduced ligand exchange, cis-[Ru(bpy)2(P(p-R-Ph)3)(CH3CN)]2+, where bpy = 2,2′-bipyridine and P(p-R-Ph)3 represent para-substituted triphenylphosphine ligands with R = –OCH3 (1), –CH3 (2) –H (3), –F (4), and –CF3 (5), were synthesized and characterized. The photolysis of 1–5 in water with visible light (λirr ≥ 395 nm) results in the substitution of the coordinated acetonitrile with a solvent molecule, generating the corresponding aqua complex as the single photoproduct. A 3-fold variation in quantum yield was measured with 400 nm irradiation, Φ400, where 1 is the most efficient with a Φ400 = 0.076(2), and 5 the least photoactive complex, with Φ400 = 0.026(2). This trend is unexpected based on the red-shifted metal-to-ligand charge transfer (MLCT) absorption of 1 as compared to that of 5, but can be correlated to the substituent Hammett para parameters and pKa values of the ancillary phosphine ligands. Complexes 1–5 are not toxic towards the triple negative breast cancer cell line MDA-MB-231 in the dark, but 3 and 5 are >4.2 and >19-fold more cytotoxic upon irradiation with blue light, respectively. A number of experiments point to apoptosis, and not to necrosis or necroptosis, as the mechanism of cell death by 5 upon irradiation. These findings provide a foundation for understanding the role of phosphine ligands on photoinduced ligand substitution and show the enhancement afforded by –CF3 groups on photochemotherapy, which will aid the future design of photocages for photochemotherapeutic drug delivery.

Ru(ii) complexes exhibit photoinduced exchange of coordinated CH3CN and photocytotoxicity against breast cancer cells highly dependent on the substituents of the ancillary triphenylphospine ligand.  相似文献   

20.
Most ligand designs for reactions catalyzed by (NHC)Cu–H (NHC = N-heterocyclic carbene ligand) have focused on introducing steric bulk near the Cu center. Here, we evaluate the effect of remote ligand modification in a series of [(NHC)CuH]2 in which the para substituent (R) on the N-aryl groups of the NHC is Me, Et, tBu, OMe or Cl. Although the R group is distant (6 bonds away) from the reactive Cu center, the complexes have different spectroscopic signatures. Kinetics studies of the insertion of ketone, aldimine, alkyne, and unactivated α-olefin substrates reveal that Cu–H complexes with bulky or electron-rich R groups undergo faster substrate insertion. The predominant cause of this phenomenon is destabilization of the [(NHC)CuH]2 dimer relative to the (NHC)Cu–H monomer, resulting in faster formation of Cu–H monomer. These findings indicate that remote functionalization of NHCs is a compelling strategy for accelerating the rate of substrate insertion with Cu–H species.

Remote modification of an N-heterocyclic carbene ligand with bulky or electron-rich groups in [(NHC)Cu(μ-H)]2 increases the rate of substrate insertion, which kinetics studies suggest arises from changes in the Cu–H monomer–dimer equilibrium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号