首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
We develop and analyze a best basis algorithm for orthonormal bases of local cosines which satisfy a uniform bound on their time-frequency concentration. All waveforms are obtained from three elementary window functions by shifts, rescaling, and modulation. For a discrete signal of length N, the complexity is of order N(log N)2.  相似文献   

2.
We show that, for quasi-greedy bases in real or complex Banach spaces, an optimal bound for the ratio between greedy N-term approximation ∥x?G N x∥ and the best N-term approximation σ N (x) is controlled by max{μ(N),k N }, where μ(N) and k N are well-known constants that quantify the democracy and conditionality of the basis. In particular, for democratic bases this bound is O(logN). We show with various examples that these bounds are actually attained.  相似文献   

3.
This paper introduces orthogonal bandelet bases to approximate images having some geometrical regularity. These bandelet bases are computed by applying parametrized Alpert transform operators over an orthogonal wavelet basis. These bandeletization operators depend upon a multiscale geometric flow that is adapted to the image at each wavelet scale. This bandelet construction has a hierarchical structure over wavelet coefficients taking advantage of existing regularity among these coefficients. It is proved that Cα‐images having singularities along Cα‐curves are approximated in a best orthogonal bandelet basis with an optimal asymptotic error decay. Fast algorithms and compression applications are described. © 2008 Wiley Periodicals, Inc.  相似文献   

4.
Quantum splines are piecewise polynomials whose quantum derivatives (i.e. certain discrete derivatives or equivalently certain divided differences) agree up to some order at the joins. Just like classical splines, quantum splines admit a canonical basis with compact support: the quantum B-splines. These quantum B-splines are the q-analogues of classical B-splines. Here quantum B-spline bases and quantum B-spline curves are investigated, using a new variant of the blossom: the q (quantum)-blossom. The q-blossom of a degree d polynomial is the unique symmetric, multiaffine function in d variables that reduces to the polynomial along the q-diagonal. By applying the q-blossom, algorithms and identities for quantum B-spline bases and quantum B-spline curves are developed, including quantum variants of the de Boor algorithms for recursive evaluation and quantum differentiation, knot insertion procedures for converting from quantum B-spline to piecewise quantum Bézier form, and a quantum variant of Marsden’s identity.  相似文献   

5.
We suggest a three-step strategy to find a good basis (dictionary) for non-linear m-term approximation. The first step consists of solving an optimization problem of finding a near best basis for a given function class F, when we optimize over a collection D of bases (dictionaries). The second step is devoted to finding a universal basis (dictionary) D u D for a given pair (F, D) of collections: F of function classes and D of bases (dictionaries). This means that Du provides near optimal approximation for each class F from a collection F. The third step deals with constructing a theoretical algorithm that realizes near best m-term approximation with regard to D u for function classes from F. In this paper we work this strategy out in the model case of anisotropic function classes and the set of orthogonal bases. The results are positive. We construct a natural tensor-product-wavelet-type basis and prove that it is universal. Moreover, we prove that a greedy algorithm realizes near best m-term approximation with regard to this basis for all anisotropic function classes.  相似文献   

6.
The Ball basis was introduced for cubic polynomials by Ball, and two different generalizations for higher degree m polynomials have been called the Said–Ball and the Wang–Ball basis, respectively. In this paper, we analyze some shape preserving and stability properties of these bases. We prove that the Wang–Ball basis is strictly monotonicity preserving for all m. However, it is not geometrically convexity preserving and is not totally positive for m>3, in contrast with the Said–Ball basis. We prove that the Said–Ball basis is better conditioned than the Wang–Ball basis and we include a stable conversion between both generalized Ball bases. The Wang–Ball basis has an evaluation algorithm with linear complexity. We perform an error analysis of the evaluation algorithms of both bases and compare them with other algorithms for polynomial evaluation.  相似文献   

7.
The goal of this paper is to provide wavelet characterizations for anisotropic Besov spaces. Depending on the anisotropy, appropriate biorthogonal tensor product bases are introduced and Jackson and Bernstein estimates are proved for two-parameter families of finite-dimensional spaces. These estimates lead to characterizations for anisotropic Besov spaces by anisotropy-dependent linear approximation spaces and lead further on to interpolation and embedding results. Finally, wavelet characterizations for anisotropic Besov spaces with respect to Lp-spaces with 0<p<∞ are derived.  相似文献   

8.
In L2(0, 1)2) infinitely many different biorthogonal wavelet bases may be introduced by taking tensor products of one–dimensional biorthogonal wavelet bases on the interval (0, 1). Most well–known are the standard tensor product bases and the hyperbolic bases. In [23, 24] further biorthogonal wavelet bases are introduced, which provide wavelet characterizations for functions in anisotropic Besov spaces. Here we address the following question: Which of those biorthogonal tensor product wavelet bases is the most appropriate one for approximating nonlinearly functions from anisotropic Besov spaces? It turns out, that the hyperbolic bases lead to nonlinear algorithms which converge as fast as the corresponding schemes with respect to specific anisotropy adapted bases.  相似文献   

9.
A multiplication operator on a Hilbert space may be approximated with finite sections by choosing an orthonormal basis of the Hilbert space. Multiplication operators with nonzero symbols, defined on L2 spaces of functions, are never compact and then such approximations cannot converge in the norm topology. Instead, we consider how well the spectra of the finite sections approximate the spectrum of the multiplication operator whose expression is simply given by the essential range of the symbol (i.e. the multiplier). We discuss the case of real orthogonal polynomial bases and the relations with the classical Fourier basis whose choice leads to the well studied Toeplitz case. Indeed, the asymptotic approximation of the spectrum by the spectra of the associated Toeplitz sections is possible only under precise geometric assumptions on the range of the symbol. Conversely, the use of circulant approximations leads to constructive algorithms, with O(N log(N)) complexity (N = number of sections), working in general and generalizable to the separable multivariate and matrix-valued cases as well.  相似文献   

10.
We prove APX-hardness for the two problems maximum resource bin packing and lazy bin covering. Simple algorithms matching the best absolute bounds under the assumption PNP are also derived.  相似文献   

11.
Adaptive tensor product wavelet methods are applied for solving Poisson’s equation, as well as anisotropic generalizations, in high space dimensions. It will be demonstrated that the resulting approximations converge in energy norm with the same rate as the best approximations from the span of the best N tensor product wavelets, where moreover the constant factor that we may lose is independent of the space dimension n. The cost of producing these approximations will be proportional to their length with a constant factor that may grow with n, but only linearly.  相似文献   

12.
The Maximum Diversity Problem (MDP) requires to extract a subset M of given cardinality from a set N, maximising the sum of the pair-wise diversities between the extracted elements. The MDP has recently been the subject of much research, and several sophisticated heuristics have been proposed to solve it. The present work compares four local search metaheuristics for the MDP, all based on the same Tabu Search procedure, with the aim to identify what additional elements provide the strongest improvement. The four metaheuristics are an Exploring Tabu Search, a Scatter Search, a Variable Neighbourhood Search and a simple Random Restart algorithm. All of them prove competitive with the best algorithms proposed in the literature. Quite surprisingly, the best ones are the simple Random Restart algorithm and a Variable Neighbourhood Search algorithm with an unusual parameter setting, which makes it quite close to random restart. Although this is probably related to the elementary structure of the MDP, it also suggests that, more often than expected, simpler algorithms might be better.  相似文献   

13.
Variation of cost functions in integer programming   总被引:3,自引:0,他引:3  
We study the problem of minimizingc · x subject toA · x =b. x ≥ 0 andx integral, for a fixed matrixA. Two cost functionsc andc′ are considered equivalent if they give the same optimal solutions for eachb. We construct a polytopeSt(A) whose normal cones are the equivalence classes. Explicit inequality presentations of these cones are given by the reduced Gröbner bases associated withA. The union of the reduced Gröbner bases asc varies (called the universal Gröbner basis) consists precisely of the edge directions ofSt(A). We present geometric algorithms for computingSt(A), the Graver basis, and the universal Gröbner basis.  相似文献   

14.
This paper is a study of the car sequencing problem, when feature spacing constraints are soft and colors of vehicles are taken into account. Both pseudo-polynomial algorithms and lower bounds are presented for parts of the problem or family of instances. With this set of lower bounds, we establish the optimality (up to the first non-trivial criteria) of 54% of best known solutions for the benchmark used for the Roadef Challenge 2005. We also prove that the optimal penalty for a single ratio constraint N/P can be computed in O(P) and that determining the feasibility of a car sequencing instance limited to a pair of simple ratio constraints can be achieved by dynamic programming. Finally, we propose a solving algorithm exploiting these results within a local search approach. To achieve this goal, a new meta-heuristic (star relinking) is introduced, designed for the optimization of an aggregation of criteria, when the optimization of each single criterion is a polynomial problem.  相似文献   

15.
We establish a Sturmian separation theorem for conjoined bases of 2n-dimensional symplectic difference systems. In particular, we show that the existence of a conjoined basis without focal points in a discrete interval (0,N+1] implies that any other conjoined basis has at most n focal points (counting multiplicities) in this interval.  相似文献   

16.
A near-optimum parallel algorithm for solving facility layout problems is presented in this paper where the problem is NP-complete. The facility layout problem is one of the most fundamental quadratic assignment problems in Operations Research. The goal of the problem is to locate N facilities on an N-square (location) array so as to minimize the total cost. The proposed system is composed of N × N neurons based on an artificial two-dimensional maximum neural network for an N-facility layout problem. Our algorithm has given improved solutions for several benchmark problems over the best existing algorithms.  相似文献   

17.
Two-dimensional arrays can be compared by a generalization of dynamic programming algorithms for string comparison. Earlier algorithms have computational complexity O(N6) for comparison of two N × N arrays. The computational complexity is reduced to O(N4) in general and O(N2) algorithms are pointed out for the range limited case. An example is given to illustrate the lack of knowledge of mathematical properties of these algorithms. The problem of finding an algorithm to compute the minimum number of insertions, deletions, and substitutions to transform one array into another remains open.  相似文献   

18.
19.
This paper presents several algorithms that compute border bases of a zero-dimensional ideal. The first relates to the FGLM algorithm as it uses a linear basis transformation. In particular, it is able to compute border bases that do not contain a reduced Gröbner basis. The second algorithm is based on a generic algorithm by Bernard Mourrain originally designed for computing an ideal basis that need not be a border basis. Our fully detailed algorithm computes a border basis of a zero-dimensional ideal from a given set of generators. To obtain concrete instructions we appeal to a degree-compatible term ordering σ and hence compute a border basis that contains the reduced σ-Gröbner basis. We show an example in which this computation actually has advantages over Buchberger's algorithm. Moreover, we formulate and prove two optimizations of the Border Basis Algorithm which reduce the dimensions of the linear algebra subproblems.  相似文献   

20.
Positive basis is an important concept in direct search methods. Although any positive basis can ensure the convergence in theory, the maximum positive bases are often used to construct direct search algorithms. In this paper, two direct search methods for computational expensive functions are proposed based on the minimal positive bases. The Coope–Price’s frame-based direct search framework is employed to insure convergence. PRP+ method and a recently developed descent conjugate gradient method are employed respectively to accelerate convergence. The data profiles and the performance profiles of the numerical experiments show that the proposed methods are effective for computational expensive functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号