首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
Most metals fail in a ductile fashion, i.e, fracture is preceded by significant plastic deformation. The modeling of failure in ductile metals must account for complex phenomena at micro-scale, such as nucleation, growth and coalescence of micro-voids. In this work, we start with von-Mises plasticity model without considering void generation. The modeling of macroscopic cracks can be achieved in a convenient way by the continuum phase field approaches to fracture, which are based on the regularization of sharp crack discontinuities [1]. This avoids the use of complex discretization methods for crack discontinuities and can account for complex crack patterns. The key aspect of this work is the extension of the energetic and the stress-based phase field driving force function in brittle fracture to account for a coupled elasto-plastic response in line with our recent work [3]. We develop a new theoretical and computational framework for the phase field modeling of ductile fracture in elastic-plastic solids. To account for large strains, the constitutive model is constructed in the logarithmic strain space, which simplify the model equations and results in a formulation similar to small strains. We demonstrate the modeling capabilities and algorithmic performance of the proposed formulation by representative simulations of ductile failure mechanisms in metals. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
This work outlines a variational-based framework for the phase field modeling of ductile fracture in elastic-plastic solids at large strains. The phase field approach regularizes sharp crack discontinuities within a pure continuum setting by a specific gradient damage model with geometric features rooted in fracture mechanics. Based on the recent works [1, 2], the phase field model of ductile fracture is linked to a formulation of gradient plasticity at finite strains in order to ensure the crack to evolve inside the plastic zones. The thermodynamic formulation is based on the definition of a constitutive work density function including the stored elastic energy and the dissipated work due to plasticity and fracture. The proposed canonical theory is shown to be governed by a rate-type minimization principle, which determines the coupled multi-field evolution problem. Another aspect is the regularization towards a micromorphic gradient plasticity-damage setting which enhances the robustness of the finite element formulation. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
The numerical modeling of failure mechanisms due to fracture based on sharp crack discontinuities is extremely demanding and suffers in situations with complex crack topologies. This drawback can be overcome by recently developed diffusive crack modeling concepts, which are based on the introduction of a crack phase field. Such an approach is conceptually in line with gradient-extended continuum damage models which include internal length scales. In this paper, we extend our recently outlined mechanical framework [1–3] towards the phase field modeling of fracture in the coupled problem of fluid transport in deforming porous media. Here, extremely complex crack patterns may occur due to drying or hydraulic induced fracture, the so called fracking. We develop new variational potentials for Biot-type fluid transport in porous media at finite deformations coupled with phase field fracture. It is shown, that this complex coupled multi-field problem is related to an intrinsic mixed variational principle for the evolution problem. This principle determines the rates of deformation, fracture phase field and fluid content along with the fluid potential. We develop a robust computational implementation of the coupled problem based on the potentials mentioned above and demonstrate its performance by the numerical simulation of complex fracture patterns. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
The numerical modeling of dynamic failure mechanisms in solids due to fracture based on sharp crack discontinuities suffers in situations with complex crack topologies and demands the formulation of additional branching criteria. This drawback can be overcome by a diffusive crack modeling, which is based on the introduction of a crack phase field. We focus on the extension of a recently developed phase field model for fracture from the quasi-static setting towards the dynamic setting. It is obtained by taking into account inertial terms and associated dynamic integrators. The introduction of a history field, containing a maximum fracture-driving energy, provides a very transparent representation of the balance equation that governs the diffusive crack topology. In particular, it allows for the construction of an extremely robust operator split technique. In a subsequent step, the proposed model is extended to three dimensional problems. The dynamic treatment opens the door to the analysis of complex fracture phenomena like multiple crack branching and crack arrest. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
The computational modeling of failure mechanisms in solids due to fracture based on sharp crack discontinuities exhibits drawbacks in situations with complex crack topologies. This drawback is overcome by diffusive crack modeling based on the introduction of a fracture phase field characterizing via an auxiliary variable the crack topology. In the following we extend recent advances in phase-field-type fracture based on operator split techniques, suggested in Miehe et al. [1], to the modeling of crack propagation in geometrically large deforming solids e.g. rubber-like materials. An extremely robust algorithmic treatment based on an operator split scheme is introduced consisting of three steps. Updating i) a local history-field containing the maximum reference energy, ii) the fracture phase field, and iii) the displacement field. We demonstrate the performance of proposed phase field formulation for largely deforming solids by means of a representative numerical example. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
The numerical modeling of failure mechanisms in plates and shells due to fracture based on sharp crack discontinuities is extremely demanding and suffers in situations with complex crack topologies. This drawback can be overcome by a diffusive crack modeling, which is based on the introduction of a crack phase field. In this paper, we extend ideas recently outlined in [1, 2] towards the phase field modeling of fracture in dimension-reduced continua with application to Kirchhoff plates and shells. The introduction of history fields, containing the maximum reference energy obtained in history, provides a very transparent representation of the coupled balance equations and allows the construction of an extremely robust operator split technique. The performance of the proposed models is demonstrated by means of representative numerical examples. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
The modeling of failure in ductile metals must account for complex phenomena at a micro-scale as well as the final rupture at the macro-scale. Within a top-down viewpoint, this can be achieved by the combination of a micro-structure-informed elastic-plastic model with a concept for the modeling of macroscopic crack discontinuities. In this context, it is important to account for material length scales and thermo-mechanical coupling effects due to dissipative heating. This can be achieved by the construction of non-standard, gradient-enhanced models of plasticity with a full embedding into continuum thermodynamics [1,2]. The modeling of macroscopic cracks can be achieved in a convenient way by recently developed continuum phase field approaches to fracture based on regularized crack discontinuities. This avoids the use of complex discretization methods for crack discontinuities, and can account for complex crack patterns within a pure continuum formulation. Moreover, the phase field modeling of fracture is related to gradient theories of continuum damage mechanics, and fits nicely the structure of constitutive models for gradient plasticity. The main focus of this work is the extensions to gradient thermoplasticity and phase field formulation of ductile fracture, conceptually in line with the work [3]. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The computational modeling of failure mechanisms in solids due to fracture based on sharp crack discontinuities suffers in dynamic problems with complex crack topologies. This can be overcome by a diffusive crack modeling based on the introduction of a crack phase field. We outline a conceptual framework for phase field models of crack propagation in brittle elastic and ductile elastic-plastic solids under dynamic loading and investigate the ductile to brittle failure mode transition observed in the experiment performed by Kalthoff and Winkeler [3]. We develop incremental variational principles and consider their numerical implementations by multi-field finite element methods. To this end, we define energy storage and dissipation functions for the plastic flow including the fracture phase field. The introduction of local history fields that drive the evolution of the crack phase field inspires the construction of robust operator split schemes. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Hydraulically driven fracture has gained more and more research activity in the last few years, especially due to the growing interest of the petroleum industry. Key challenge for a powerful simulation of this scenario is an effective modeling and numerical implementation of the behavior of the solid skeleton and the fluid phase, the mechanical coupling between the two phases as well as the incorporation of the fracture process. Existing models for hydraulic fracturing can be found for example in [1], where the crack path is predetermined, or in [2] who use a phase field fracture model in an elastic framework, however without incorporating the fluid flow. In this work we propose a new compact model structure for the Biot-type fluid transport in porous media at finite strains based on only two constitutive functions, that is the free energy function ψ and a dissipation potential ϕ that includes the incorporation of an additional Poiseuille-type fluid flow in cracks. This formulation is coupled to a phase field approach for fracture and is fully variational in nature, as shown in [3]. In contrast to formulations with a sharp-crack discontinuity, the proposed regularized approach has the main advantage of a straight-forward modeling of complex crack patterns including branching. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
11.
The phase field modeling of brittle fracture was a topic of intense research in the last few years and is now well-established. We refer to the work [1-3], where a thermodynamically consistent framework was developed. The main advantage is that the phase-field-type diffusive crack approach is a smooth continuum formulation which avoids the modeling of discontinuities and can be implemented in a straightforward manner by multi-field finite element methods. Therefore complex crack patterns including branching can be resolved easily. In this paper, we extend the recently outlined phase field model of brittle crack propagation [1-3] towards the analysis of ductile fracture in elastic-plastic solids. In particular, we propose a formulation that is able to predict the brittle-to-ductile failure mode transition under dynamic loading that was first observed in experiments by Kalthoff and Winkler [4]. To this end, we outline a new thermodynamically consistent framework for phase field models of crack propagation in ductile elastic-plastic solids under dynamic loading, develop an incremental variational principle and consider its robust numerical implementation by a multi-field finite element method. The performance of the proposed phase field formulation of fracture is demonstrated by means of the numerical simulation of the classical Kalthoff-Winkler experiment that shows the dynamic failure mode transition. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The computational modeling of failure mechanisms in solids due to fracture based on sharp crack discontinuities suffers in situations with complex crack topologies. This can be overcome by diffusive crack modeling, based on the introduction of a crack phase field as outlined in [1, 2]. Following these formulations, we outline a thermodynamically consistent framework for phase field models of crack propagation in elastic solids, develop incremental variational principles and, as an extension to [1, 2], consider their numerical implementations by an efficient h-adaptive finite element method. A key problem of the phase field formulation is the mesh density, which is required for the resolution of the diffusive crack patterns. To this end, we embed the computational framework into an adaptive mesh refinement strategy that resolves the fracture process zones. We construct a configurational-force-based framework for h-adaptive finite element discretizations of the gradient-type diffusive fracture model. We develop a staggered computational scheme for the solution of the coupled balances in physical and material space. The balance in the material space is then used to set up indicators for the quality of the finite element mesh and accounts for a subsequent h-type mesh refinement. The capability of the proposed method is demonstrated by means of a numerical example. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Arun Raina  Christian Miehe 《PAMM》2015,15(1):103-104
We present an application of the phase-field method of fracture to the simulation of artery rupture at large strains. To achieve this, the crack driving force function associated with the evolution of the crack phase-field is modified to account for the inherent anisotropy of the soft biological tissues. The phase-field methods present a promising and innovative approach to the thermodynamically consistent modeling of fracture. A key advantage lies in the prediction of the complex crack topologies where the cohesive zone approaches to fracture are known to suffer. A regularized crack surface functional is introduced that Γ-converges to a sharp crack topology for vanishing length scale parameter. The evaluation of the phase-field follows the minimization of this crack surface functional. The phase-field variable can be treated as a geometric quantity whose evolution is coupled to the anisotropic bulk response in a modular format in terms of a crack driving state function. A stress-based anisotropic failure criterion is introduced whose maximum value from the deformation history drives the irreversible crack phase-field. The formulation is verified by the finite element based simulation of a real arterial cross-section undergoing rupture in a two-dimensional setting when subjected to inflation pressure. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
15.
The paper performs a comparative study of variational-based brittle fracture with its gradient-type regularization, and outlines aspects of the numerical implementations of both approaches. The latter smoothes out sharp displacement discontinuities of cracks. On the side of discrete crack modeling, we propose a variational framework of configurational-force-driven crack propagation. The latter provides the basis for the computation of material nodal forces and drives the crack propagation in our proposed finite element framework with adaptive nodal doubling. Such a formulation is of limited applicability for the modeling of crack inititation in homogeneous bodies without defects and in situations with complex crack branching. This can be overcome by a regularized crack modeling. Here, an elliptic approximation of the crack surface term yields a regularized two field functional, where an additional scalar field approximates the set of discontinuities. We provide a simple interpretation of such a transition from the sharp crack to the regularized setting. It results in a smooth continuum-damage-type theory with a specific gradient-damage and hardening terms, depending on a length scale that represents the width of a zone that surrounds the crack. Such a variational framework is implemented by a coupled two-field finite element framework in a staightforward manner. We compare representative numerical results obtained by both methods for selected crack patterns and highlight the pro and contra of both meshes. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
In many seemingly diverse physical contexts (including, for example, certain radiation field problems, studies of crystallographic minimal surfaces, the theory of scattering of acoustic or electromagnetic waves by means of an elliptic disk, studies of elliptical crack problems in fracture mechanics, and so on), a remarkably large number of general families of elliptic-type integrals, and indeed also many definite integrals of such families with respect to their modulus (or complementary modulus), are known to arise naturally. Motivated essentially by these and many other potential avenues of their applications, we present here a systematic account of the theory of a certain family of incomplete elliptic integrals in a unified and generalized manner. By means of the familiar Riemann–Liouville fractional differintegral operators, we obtain several explicit hypergeometric representations and apply these representations with a view to deriving various associated definite integrals, not only with respect to the modulus (or complementary modulus), but also with respect to the amplitude of the incomplete elliptic integrals involved therein.  相似文献   

17.
In the recent years phase-field modeling of fracture has become a promising tool to describe complex crack patterns in all kinds of solid materials. Many of the models assume an isotropic material behavior, which of course is not a meaningful assumption for e.g. biological tissues such as arterial walls. Since the phase-field approach introduces an additional (smeared) phase describing the evolution of the crack, this method is well suited to be extended to anisotropic materials without thinking about an adaption of the discretization technique. Anisotropy can be incorporated in several ways, like by an extension of the surface energy, i.e. by making the energy release rate orientation dependent, as considered in [1]. Our ansatz is based on a pure geometrical approach, namely on an anisotropic formulation of the crack surface itself. Here, we will focus on transversely isotropic and cubically anisotropic solids, where the latter one makes the incorporation of the second gradient of the crack phase field necessary. At the end one numerical example is shown, which conceptually shows the influence of the anisotropy on the crack path. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
19.
本文考虑非线性断裂动力学中的路径无关积分和断裂准则.在讨论中计入了动力效应和裂纹的传播现象,考虑了裂纹在非线性弹性介质中的传播以及在弹塑性介质中的传播二种情况,作出了一些相应的路径无关积分.作为例子.讨论了裂纹的定常传播情况.最后,给出了这种路径无关积分的力学意义.说明它可用来作为非线性断裂动力学的一种断裂准则.  相似文献   

20.
论三维非线性断裂动力学中的路径无关积分   总被引:1,自引:1,他引:0  
本文讨论三维非线性断裂动力学中的路径无关积分,它是文[4]关于二维情况结果的拓充.在研究三维非线性固体中埋藏裂纹或表面裂纹的动力传播问题中,这种拓充是必要的.固体介质是非线性弹性的或弹塑性的的情况均被加以考虑,并作出了相应的向量型路径无关积分.解释了这种路径无关积分的力学意义,它被证明联系于动力裂纹扩展力,因而,它们可用于构作非线性断裂动力学中的断裂准则.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号