首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
This article presents a continuum damage mechanics approach to characterize fatigue mechanisms of cord-rubber composites. An airspring bellow which consists of layers of rubber and reinforcing cords is considered for this work. The phenomenological material model for rubber is formulated for the purpose of analyzing the rate dependent behavior under cyclic loading. The rate dependency and hysteretic behavior are characterized by using the concept of internal variables [1]. The implementation of the constitutive formulation for rubber material is done in ABAQUS via UMAT. A fatigue failure mechanisms of cord-reinforced airspring is for example interfacial debonding. Within the framework of finite element cohesive zone modeling, a user element is developed to study the cord-rubber interfacial debonding. Furthermore, the developed methodology can be easily extended to understand the long-term effects of e.g. temperature, frequency, loading rates, amplitudes etc. on the fatigue life of airsprings. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Polymer-matrix composites are viscoelastic materials, and their mechanical properties are significantly influenced by temperature. The present study develops a power-law stress–fatigue life relation which takes into account the effect of temperature on the fatigue strength of fibre-reinforced polymer (FRP) composites. The validity of the relation is evaluated on the basis of various sets of experimental data found in the literature, and the estimated fatigue lives obtained are found to be in good agreement with the experiments.  相似文献   

3.
结合轴线偏移情况开展回转窑滚圈多轴疲劳寿命研究,采用了Wang和Brown提出的多轴疲劳准则和雨流计数法及Miner准则进行累积损伤评估.回转窑运行轴线偏移会导致滚圈承受的支承载荷分布严重不均,因此引入载荷比来描述轴线偏移程度以进一步定量分析滚圈应力.采用有限元软件ANSYS进行了各载荷比下滚圈的接触应力分析,并根据滚动接触区域情况计算得到了切向摩擦应力.以某回转窑滚圈为分析对象,计算得到了随载荷比变化的疲劳寿命曲线,揭示了轴线偏移对滚圈疲劳寿命的影响规律.研究对减少滚圈疲劳失效有重要意义,同时也可作为轴线调整和优化调窑的理论依据.  相似文献   

4.
Several authors have proposed mechanical models to predict long term tooth movement, considering both the tooth and its surrounding bone tissue as isotropic linear elastic materials coupled to either an adaptative elasticity behavior or an update of the elasticity constants with density evolution. However, tooth movements obtained through orthodontic appliances result from a complex biochemical process of bone structure and density adaptation to its mechanical environment, called bone remodeling. This process is far from linear reversible elasticity. It leads to permanent deformations due to biochemical actions. The proposed biomechanical constitutive law, inspired from Doblaré and García (2002) [30], is based on a elasto-viscoplastic material coupled with Continuum isotropic Damage Mechanics (Doblaré and García (2002) [30] considered only the case of a linear elastic material coupled with damage). The considered damage variable is not actual damage of the tissue but a measure of bone density. The damage evolution law therefore implies a density evolution. It is here formulated as to be used explicitly for alveolar bone, whose remodeling cells are considered to be triggered by the pressure state applied to the bone matrix. A 2D model of a tooth submitted to a tipping movement, is presented. Results show a reliable qualitative prediction of bone density variation around a tooth submitted to orthodontic forces.  相似文献   

5.
Mechanics of Composite Materials - A new fatigue failure criterion to predict the fatigue life of layered composites under a plane stress state is presented. The criterion is based on a nonlinear...  相似文献   

6.
The prediction of X-ray intensities based on the distribution of electrons throughout solid materials is essential to solve the inverse problem of quantifying the composition of materials in electron probe microanalysis (EPMA) [3]. We present a hyperbolic conservation law for electron transport in solid materials and investigate its validity under conditions typical for EPMA experiments. The conservation law is based on the time-stationary Boltzmann equation for binary electron-atom scattering. We model the energy loss of the electrons with a continuous slowing-down approximation. A first order moment approximation with respect to the angular variable is discussed. We propose to use a minimum entropy closure to derive a system of hyperbolic conservation laws, known as the M1 model [11]. A finite volume scheme for the numerical solution of the resulting equations is presented. Important numerical aspects of the scheme are discussed, such as bounds for the finite propagation speeds, as well as difficulties arising fromspatial discontinuities in thematerial coefficients and the scaling of the characteristic velocities with the stopping power of the electrons.We compare the accuracy and performance of the numerical solution of the hyperbolic conservation law to Monte Carlo simulations. The results indicate a reasonable accuracy of the proposed method and showthat compared to the MonteCarlo simulation the finite volume scheme is computationally less expensive.  相似文献   

7.
The proper modeling of state-of-the-art engineering materials requires a profound understanding of the nonlinear macroscopic material behavior. Especially for heterogeneous materials the effective macroscopic response is amongst others driven by damage effects and the inelastic material behavior of the individual constituents [1]. Since the macroscopic length scale of such materials is significantly larger than the fine-scale structure, a direct modeling of the local structure in a component model is not convenient. Multiscale techniques can be used to predict the effective material behavior. To this end, the authors developed a modeling technique based on representative volume elements (RVE) to predict the effective material behavior on different length scales. The extended finite element method (XFEM) is used to model discontinuities within the material structure independent of the underlying FE mesh. A dual enrichment strategy allows for the combined modeling of kinks (material interfaces) and jumps (cracks) within the displacement field [2]. The gradual degradation of the interface is thereby controlled by a cohesive zone model. In addition to interface failure, a non-local strain driven continuum damage model has been formulated to efficiently detect localization zones within the material phases. An integral formulation introduces a characteristic length scale and assures the convergence of the approach upon mesh refinement [3]. The proposed method allows for an efficient modeling of substantial failure mechanisms within a heterogeneous structure without the need of remeshing or element substitution. Due to the generality of the approach it can be used on different length scales. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The fatigue strength of engineering structures is often limited by notches which arise from constructive features or manufacturing defects. The constitutive behavior in notch regions is then characterized by small plastic zones which are contained in an elastic region. To avoid costly plastic calculations, approximate methods have been developed to estimate the inelastic stress‐strain response at the notch tip. One of the first and best known approximate models is that of Neuber which, over the last 40 years, has received considerable attention particularly in connection with fatigue life prediction. Numerous studies have been conducted to the verification and the generalization of the Neuber approach which respect to multiaxiality, cyclic loading and creep conditions. Recently an extension of the Neuber method to anisotropic materials has been proposed in [1] and applied to directionally solidified and single crystal Nickel based superalloys as they are used in high temperature material applications. In this short notice we modify the approach in [1] for the special case of an elastic ‐ perfectly plastic anisotropic material.  相似文献   

9.
一个用于低周疲劳寿命预测的损伤函数   总被引:10,自引:0,他引:10  
选择循环塑性应变能作为损伤变量,建立了它的瞬态响应数字模型,采用损伤力学分析方法,导出了计及循环相关的非线性疲劳损伤函数,得到了用于低周疲劳寿命预测的数学公式。利用该损伤函数预测的低周疲劳寿命与试验结果符合较好。  相似文献   

10.
11.
For the first time we present a complete proof (from the standpoint of stochastic analysis) of the generalized Itô–Venttsel’ formula whose ideas were adduced in [8]. The proposed proof is an approach to construct the generalized Itô–Venttsel’ formula based on the direct application of the generalized Itô formula and the theory of stochastic approximation in contrast to the proof presented in [17] and based on the method of the integral invariants of a stochastic differential equation.  相似文献   

12.
[EN] In this work, a nonlocal damage model is proposed for dynamic analysis of viscoplastic shell structures using the phase-field approach. A phase-field variable on the mid surface is introduced to characterize the nonlocal damage as well as the transition between undamaged and damaged phase. The total free energy in [1] is modified as a sum of Helmholtz free-energy and Ginzburg-Landau one. The latter is defined as a function of the phase-field variable and its corresponding gradient. This enhancement gives rise to an introduction of gradient parameters in terms of a substructure-related intrinsic length-scale. The evolution of the phase-field based damage variable can be found from the minimum principle of the dissipation potential [3]. The performance of the proposed model is demonstrated through numerical results of a plate with a circular hole. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Based on the product of two-parameter Laplace Birnbaum-Saunders fatigue life distribution, its failure distribution mode is theoretically derived under the progressive stress accelerated life test with inverse power law model, and then three-parameter generalized Laplace Birnbaum-Saunders fatigue life distribution is introduced. The basic properties of three-parameter generalized Laplace Birnbaum-Saunders fatigue life distribution are analyzed, and the image characteristics of its density function, failure rate function and average failure rate function are investigated. Meanwhile, the point estimate method is given for three parameters, and then the point estimates of parameters are obtained for the product of two-parameter Laplace Birnbaum-Saunders fatigue life distribution under the progressive stress accelerated life test with inverse power law model. In addition, the practical example and simulation examples are illustrated to show the feasibility of the proposed method.  相似文献   

14.
A frequency method is proposed for solving the problem of the vibrations of shells of revolution taking into account the energy dissipation under arbitrary force loading and on collision with a rigid obstacle. The Laplace transform is taken of the equation of the vibrations of a shell of revolution with non-zero initial conditions. For the inhomogeneous differential equation obtained, a variational method is used to solve the boundary-value problem, which consists of finding the Laplace-transformed boundary transverse and longitudinal forces and bending moments as functions of the boundary displacements. The equations of equilibrium of nodes, i.e. the corresponding equations of the finite-element method, are then compared, using results obtained earlier [1–4]. Amplitude-phase-frequency characteristics (APFCs) for the shell cross-sections selected are plotted. An inverse Laplace transformation is carried out using the clear relationship between the extreme points of the APFCs and the coefficients of the corresponding terms of the series in an expansion vibration modes [3]. In view of the fact that the proposed approach is approximate, numerical testing is used.  相似文献   

15.
A theoretical justification is given for an empirical boundary condition proposed by Beavers and Joseph [1]. The method consists of first using a statistical approach to extend Darcy's law to non homogeneous porous medium. The limiting case of a step function distribution of permeability and porosity is then examined by boundary layer techniques, and shown to give the required boundary condition. In an Appendix, the statistical approach is checked by using it to derive Einstein's law for the viscosity of dilute suspensions.  相似文献   

16.
The approach of Sensitivity Analysis with Green's Functions (SAGF) [1,2] was developed to predict changes in deformations, stresses or eigenfrequencies of structures resulting from stiffness modifications or cracking by considering only the weakened or damaged parts of the structures. This approach results in a local analysis instead of a global analysis by recalculating the whole structure. Consequently, it is computationally less time-consuming than the conventional methods based on a global analysis. The key idea of the SAGF approach is based on the comparison between the elastic strain energies of the original and the weakened structures and the substitution of the virtual displacements by the corresponding Green's functions [1, 2]. Furthermore, an approximate approach for the sensitivity analysis was suggested which is described in [1, 3] in details. This approach enables us to predict the changes in the structural responses due to the stiffness weakening in the beam or in the elastic Winkler foundation by considering only the internal forces or the deflections of the original unweakened system. In addition, an iterative method was developed to enhance the accuracy of the SAGF approach. In this paper, the local SAGF method for sensitivity analysis of elastic beams on Winker foundation with stiffness weakening is presented. The accuracy and the efficiency of the proposed method are verified by using a numerical example. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
In transformation induced plasticity (TRIP) steel a diffusionless austenitic-martensitic phase transformation induced by plastic deformation can be observed, resulting in excellent macroscopic properties. In particular low-alloyed TRIP steels, which can be obtained at lower production costs than high-alloyed TRIP steel, combine this mechanism with a heterogeneous arrangement of different phases at the microscale, namely ferrite, bainite, and retained austenite. The macroscopic behavior is governed by a complex interaction of the phases at the micro-level and the inelastic phase transformation from retained austenite to martensite. A reliable model for low-alloyed TRIP steel should therefore account for these microstructural processes to achieve an accurate macroscopic prediction. To enable this, we focus on a multiscale method often referred to as FE2 approach, see [6]. In order to obtain a reasonable representative volume element, a three-dimensional statistically similar representative volume element (SSRVE) [1] can be used. Thereby, also computational costs associated with FE2 calculations can be significantly reduced at a comparable prediction quality. The material model used here to capture the above mentioned microstructural phase transformation is based on [3] which was proposed for high alloyed TRIP steels, see also e.g. [8]. Computations based on the proposed two-scale approach are presented here for a three dimensional boundary value problem to show the evolution of phase transformation at the microscale and its effects on the macroscopic properties. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Nonlinear damage accumulation rules are usually constructed on the basis of certain hypotheses derived from semiempirical considerations. A method is proposed for constructing an averaged nonlinear damage accumulation rule based on the direct utilization of the results of static fatigue tests on glass-reinforced plastic specimens. Numerical examples of the calculation of the static fatigue strength under repeat loading with a given strength criterion are presented.Sverdlovsk Branch of the Steklov Mathematical Institute, Academy of Sciences of the USSR. Institute of Polymer Mechanics, Academy of Sciences of the Latvian SSR, Riga. Translated from Mekhanika Polimerov, No. 3, pp. 492–497, May–June, 1969.  相似文献   

19.
Open-hole tension tests are a part of the qualification process for composite parts that need to be joined to other parts in aircraft structures [1]. With each new material, a new set of tests is required. To reduce costs, it is desirable to develop analysis tools for the prediction of damage and failure in such tests, so that the amount of testing can be reduced and predictions can be made about material behaviour early in the design process. In this paper, an experimental and numerical study is presented on the notched (open-hole) strength of high-strength carbon/epoxy composites (HTA/6376). Open-hole tension tests have been performed on specimens with three different lay-ups — quasi-isotropic, zero-dominated, and cross-ply — in accordance with procedures in available standards. The data observed are being used to develop several methods for predicting the notched strength, and results from one such method using a progressive damage analysis are presented with comparisons with experiments. The predictions of specimen stiffness and failure load were found to agree well with experiments. To gain insight into the failure process, damage progression maps are shown.  相似文献   

20.
The method of force sources is proposed for solving linear problems related to the interaction between rigid bodies, and fluids, or gases. Method is based on the introduction of perturbation force sources into equation of motion of fluid media. Boundary conditions at the rigid body surface make it possible to reduce the problem of hydrodynamic reactions to an integral equation defining the function of force sources. Method is illustrated by the solution of three simple problems in the field of acoustics, and of viscous, and compressible media flow around bodies.

In the linearized theory of flow around rigid bodies, as well as in acoustics, an important part of the sound wave generation analysis concerns the determination of hydrodynamic reactions of the medium on moving, pulsating, or oscillating bodies. Such reactions make themselves felt as constant, or variable mechanical forces, such as drag and lift, or in the case of sound wave emitters, as the wave resistance. Various methods had been proposed for the computation of such forces, as for example, in the monographs [1 to 6].

Here, a different approach to the problem of determination of surface forces exerted by liquids and gases on the rigid body is proposed. By resorting to the formalism of the generalized functions it is possible to introduce into the equations of motion of fluid media a perturbation source in the form volume density of forces exercised by the body on the gas. The distribution of surface tension entering into the expression of this force is selected in such a manner as to satisfy boundary conditions at the body surface. It becomes possible with the use of this device to reduce the problem of determination of forces acting on the body surface to the solution of certain Integral equations. The proposed method is in all respects completely analogous to the well-known method of sources and sinks [1 to 1]. Both methods reduce the problem of interaction between body and gas to the solution of Integral equations. The method of sources and sinks, however, leads to an integral equation which describes the distribution of fictitious sources and sinks in the volume of the body having the density of the medium, while the method of force sources yields an integral equation which directly defines the distribution of mechanical forces over the surface of the body (*).

We may note that the method of force sources had to a certain extent been already used in papers [6 and 7] for the determination of sound radiation by means of point-force sources.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号