首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mg–Al–Fe ternary layered double hydroxides (LDHs) were synthesized based on Bayer red mud by a calcination–rehydration method, and characterized by X-ray diffraction (XRD) and thermogravimetric analysis (TG). The synergistic effects between melamine and LDHs in ethylene–vinyl acetate (EVA) composites were studied using limiting oxygen index (LOI), UL 94, cone calorimeter test (CCT), smoke density test (SDT), and thermogravimetry–fourier transform infrared spectrometry (TG–IR). Though melamine decreases the LOI values of EVA/LDHs/melamine composites, a suitable amount of melamine can apparently improve UL 94 rating; the composite with 45 % LDHs and 5 % melamine can pass UL 94 test. The CCTs results indicate that heat release rates (HRR) of EVA/LDHs/melamine composites decreased in comparison with that of EVA/LDHs composites. The SDT results show that melamine is helpful to smoke suppression. The TG–IR data show that the ternary composites have a higher thermal stability than that of the binary composites.  相似文献   

2.
The flammability characteristics and synergistic effect of hydrotalcite with microencapsulated red phosphorus (MRP) in halogen-free flame retardant ethylene vinyl acetate (EVA) composite have been studied by cone calorimeter test (CCT), thermogravimetric analysis (TGA), limiting oxygen index (LOI) and UL-94 test. The results obtained by comparing the flame retardancy of hydrotalcite with magnesium hydroxide (MH) and aluminium hydroxide (AH) for their EVA composites showed that hydrotalcite has higher flame retardant effect than MH and AH at the same loading level. The CCT tests indicated that the heat release rate (HRR) and mass loss rate (MLR) of EVA composite blended with hydrotalcite greatly decreased compared with those blended with MH and AH. The LOI values of EVA/hydrotalcite composites are 3-4% higher than those of the corresponding MH composites at 40-60 wt% loading levels, and 6% higher than that of the corresponding AH composite at 40 wt% loading level. Moreover, the addition of a given amount of MRP apparently resulted in the increase of LOI value and decrease of the HRR and MLR as well the loading of hydrotalcite in EVA blend while keeping the V-0 rating in UL-94 test. However, the smoke release increased during the combustion of EVA/hydrotalcite blend containing MRP.  相似文献   

3.
瞿保钧 《高分子科学》2010,28(4):563-571
<正>Synergistic effects of layered double hydroxide(LDH) with intumescent flame retardanct(IFR) of phosphorus-nitrogen (NP) compound in the polypropylene/ethylene-propylene-diene/IFR/LDH(PP/EPDM/IFR/LDH) nanocomposites and related properties were studied by X-ray diffraction(XRD),transmission electron microscopy(TEM),scanning electron microscopy(SEM),limiting oxygen index(LOI),UL-94 test,cone calorimeter test(CCT) and thermo-gravimetric analysis (TGA).The XRD and TEM results show that the intercalated and/or exfoliated nanocomposites can be obtained by direct melt-intercalation of PP/EPDM into modified LDH and that LDH can promote the IFR additive NP to disperse more homogeneously in the polymer matrix.The SEM results provide positive evidence that more compact charred layers can be obtained from the PP/EPDM/NP/LDH sample than those from the PP/EPDM/LDH and PP/EPDM/NP samples during burning.The LOI and UL-94 rating tests show that the synergetic effects of LDH with NP can effectively increase the flame retardant properties of the PP/EPDM/NP/LDH samples.The data from the CCT and TGA tests indicate that the PP/EPDM/NP/LDH samples apparently decrease the HRR and MLR values and thus enhance the flame retardant properties and have better thermal stability than the PP/EPDM/LDH and PP/EPDM/NP samples.  相似文献   

4.
The flammability characteristics and flame retardant mechanism of phosphate-intercalated hydrotalcite (MgAl-PO4) in the halogen-free flame retardant ethylene vinyl acetate (EVA) blends have been studied by X-ray diffraction (XRD), Fourier transfer infrared (FTIR) spectroscopy, cone calorimeter test (CCT), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), limiting oxygen index (LOI) and UL-94 tests. The results show that the hydrotalcite MgAl-PO4 intercalated by phosphate possesses the enhanced thermal stability and flame retardant properties compared with ordinary carbonate-intercalated hydrotalcite MgAl-CO3 in the EVA blends. The CCT tests indicate that the heat release rate (HRR) and mass loss rate (MLR) values of the EVA/MgAl-PO4 samples are much lower than those of the EVA/MgAl-CO3 samples. The TGA data show that the thermal degradation rates of MgAl-PO4 and EVA/MgAl-PO4 samples are much slower and leave more charred residues than those of MgAl-CO3 and its corresponding EVA blends. The LOI values of EVA/MgAl-PO4 samples are 2% higher than those of the corresponding EVA/MgAl-CO3 samples at the range of 40–60 wt% loadings, while the EVA sample with 55 wt% MgAl-PO4 can reach the UL-94 V-1 rating. The dynamic FTIR spectra reveal that the flame retardant mechanism of MgAl-PO4 can be ascribed to its catalysis degradation of the EVA resin, which promotes the formation of charred layers with the P–O–P and P–O–C complexes in the condensed phase. The SEM observations give further evidence of this mechanism that the compact charred layers formed from the EVA/MgAl-PO4 sample effectively protect the underlying polymer from burning.  相似文献   

5.

Nanocarbon black (CB) was introduced into ethylene-vinyl acetate/brucite (EM) composites to investigate the synergistic effect of CB and metal hydroxide on improving the flame retardancy of EVA. Flammability properties of the as-prepared EVA composites were investigated by thermogravimetric analysis, limiting oxygen index (LOI), UL-94 test and cone calorimetry test. The results indicated that the optimum mass ratio of CB/brucite was 1/54, at which the EVA composites displayed dramatic improvement on thermal stability and flame retardancy. The LOI value was as high as 35.3%, the UL-94 passed the V-0 rating, and the peak heat release rate reduced 79% in comparison with pure EVA. Based on the morphology and structure analysis for residue chars, the flame-retardant mechanism was attributed mainly to the positive synergistic effect of CB and brucite on promoting the formation of better carbon protective layer during combustion.

  相似文献   

6.
A series of flame-retardant ethylene–vinyl acetate (EVA) composites with different contents of aluminum phosphate (AHP) and Trimer were prepared. The synergistic flame-retardant effects of the Trimer with AHP in EVA/AHP blends were studied by limiting oxygen index (LOI) tests, UL-94 tests, cone calorimeter tests, thermogravimetric analysis, and scanning electron microscopy (SEM). The LOI and UL-94 results showed that the system containing AHP and Trimer was very effective in improving the flame retardancy of EVA. When the mass ratio of AHP and Trimer was 3:1, the highest flame retardancy could be obtained, and when the flame-retardant loading was 30 wt%, the EVA/AHP/Trimer (7.5%) sample could achieve the V-0 rating in UL-94 tests, at the same time, its LOI value was 24.4%. The TG and DTG results showed that the addition of flame retardants catalyzes EVA decomposition in the first stage and generates a more stable char residue in the second stage. Consequently, an efficient reduction in the flammability parameters, such as heat release rate, total heat release, smoke production rate, and total smoke production could be observed. In addition, it was observed from the SEM observations of the morphological features that the AHP and Trimer combination, at the optimum proportion, could promote the formation of compact charred layers and prevent their cracking, which effectively protected the underlying materials from burning.  相似文献   

7.
The synergistic effects of layered double hydroxide (LDH) with hyperfine magnesium hydroxide (HFMH) in halogen-free flame retardant ethylene-vinyl acetate (EVA)/HFMH/LDH nanocomposites have been studied by X-ray diffraction (XRD), transmission electron spectroscopy (TEM), thermogravimetric analysis (TGA), limiting oxygen index (LOI), mechanical properties' tests, and dynamic mechanical thermal analysis (DMTA). The XRD results show that the exfoliated EVA/HFMH/LDH can be obtained by controlling the LDH loading. The TEM images give the evidence that the organic-modified LDH (OM-LDH) can act as a disperser and help HFMH particles to disperse homogeneously in the EVA matrix. The TGA data demonstrate that the addition of LDH can raise 5-18 °C thermal degradation temperatures of EVA/HFMH/LDH nanocomposite samples with 5-15 phr OM-LDH compared with that of the control EVA/HFMH sample when 50% weight loss is selected as a point of comparison. The LOI and mechanical tests show that the LDH can act as flame retardant synergist and compatilizer to apparently increase the LOI and elongation at break values of EVA/HFMH/LDH nanocomposites. The DMTA data verify that the Tg value (−10 °C) of the EVA/HFMH/LDH nanocomposite sample with 15 phr LDH is much lower than that (Tg = −2 °C) of the control EVA/HFMH sample without LDH and approximates to the Tg value (−12 °C) of pure EVA, which indicates that the nanocomposites with LDH have more flexibility than that of the EVA/HFMH composites.  相似文献   

8.
The triazine-based charring agent (CFA) with perfect charring ability was synthesized and characterized. The synergistic effects between CFA and aluminum phosphinate (AlPi) on flame retardancy, thermal degradation, and flammability properties of thermoplastic polyester-ether elastomer (TPEE) were investigated by limiting oxygen index (LOI), vertical burning test (UL-94), cone calorimeter test (CCT), thermogravimetric analysis (TGA), laser Raman spectroscopy (LSR) and scanning electron microscopy (SEM). The results from UL-94 test showed that, by compounding 14 wt% AlPi and 4 wt% CFA with TPEE, the LOI value reached 28.5% and the UL-94 rating reached V-0 (1.6 mm). TGA results indicated that there is good synergistic charring ability between CFA and AlPi, especially the increased residues at high temperature (T > 700 °C). The CCT test results showed that CFA could change the combustion behavior of TPEE and effectively accelerate the formation of expanded carbon layers. The residues after combustion were measured by LRS and SEM, demonstrating that CFA can promote the formation of dense and stable carbon layers during the combustion, which could inhibit the melt dropping and improve the fire retardancy of TPEE composites. Thus, CFA was a promising synergistic agent in halogen-free flame retardant TPEE.  相似文献   

9.
Halogen-free flame retarded ethylene vinyl acetate copolymer (EVA) composites using Mg-Al-CO3 hydrotalcite (MALDH) and microcapsulated red phosphorus (MRP) have been prepared in a melt process. The flame retardation of the composites has been studied by the limited oxygen index (LOI) and UL-94 methods, and the thermal decomposition by the thermogravimetric analysis (TGA). The changes of their properties of the composites before and after the Gamma irradiation are compared. The synergistic effect in the flame retardation between MALDH and MRP in EVA has been found. The EVA/MALDH/MRP composites after the irradiation crosslinking result in a great increase in the Vicat softening point. The LOI value, the mechanical properties and thermal stability are also improved for the composites irradiated by a suitable irradiation dose.  相似文献   

10.
The synergistic effects and mechanism of multiwalled carbon nanotubes (MWNTs) with magnesium hydroxide (MH) in halogen-free flame retardant EVA/MH/MWNT nanocomposites have been studied by cone calorimeter test (CCT), limiting oxygen index (LOI), thermogravimetric analysis (TGA), torque test, morphological evolution experiment, and scanning electron microscopy (SEM). The data obtained from the CCT, LOI, and TGA show that suitable amount of MWNTs has synergistic effects with MH in the EVA/MH/MWNT nanocomposites. The MWNTs can considerably decrease the heat release rates and mass loss rate by about 50-60%, prolongate the combustion time to near two times, and increase the LOI values by 5% when 2 wt% MWNTs substitute for the MH in the EVA/MH/MWNT samples. The TGA data also show that the synergistic effects of MWNTs with MH apparently increase the thermal degradation temperatures and final charred residues of the EVA/MH/MWNT samples. The experimental observations from the torque, morphological evolution tests, and SEM give positive evidences that the synergistic mechanism of MWNTs with MH can be described to: (i) the increase of melt viscosity because of network structure formation of MWNTs in the EVA/MH matrix; (ii) the enhancement of thermo-oxidation stability due to the MWNTs' mechanical strength and integrity of the charred layers in the EVA/MH/MWNT nanocomposites; (iii) the formation of compact charred layers promoted by MWNTs acted as heat barrier and thermal insulation. All the above-mentioned factors efficiently enhance thermal and flame retardant properties and protect the EVA/MH/MWNT nanocomposite materials to be burning.  相似文献   

11.
In this article, the composites based on long glass fibre reinforced polypropylene/intumescent flame retardant (LGFPP/IFR) were prepared by melt blending. The influence of thermal oxidative ageing on the LGFPP/IFR composites with different thermal oxidative ageing time at 140 °C was studied by means of oven heating. The thermal stability and flammability of the composites were respectively investigated by thermal gravimetric analysis (TG), limiting oxygen index (LOI), UL-94 test, cone calorimeter test (CCT), scanning electronic microscopy (SEM), mechanical properties test and energy-dispersive X-ray analysis (EDAX). A trend of increase first and then decrease in LOI values was shown in 0–50 days ageing, with the same trend as thermal stability obtained from TG in nitrogen condition. The CCT results indicated that the LGFPP/IFR composites after ageing achieved a higher heat release rate, which means a higher fire risk. The mechanical properties showed a global decrease in just 10 days ageing. Morphologies obtained from SEM showed that both the rupture of PP matrix and fibre interface debonding led to the decrease in mechanical properties. The EDAX proved that IFR particles could emerge and gather on the surface of sample in ageing procedure, which had great effects on the thermal stability and flame retardancy of the composites.  相似文献   

12.
The morphology, thermal degradation, and flame retardancy of epoxy (EP) composites containing microcrystalline cellulose whisker (MCW) and microencapsulated ammonium polyphosphate (MFAPP) were investigated using optical microscopy, limiting oxygen index (LOI), UL-94, thermogravimetry (TG), microscale combustion calorimeter, and TG-FTIR. EP/MFAPP/MCW composites can pass V-0 in UL-94 test at 6 wt% loading, and its peak heat release rate decreases when compared with EP and EP/MFAPP. The reason is that the presence of MCW strengthens the charring capacity of EP composites in a fire. The results of TG and TG-FTIR show that at low temperature, MFAPP stimulates the dehydration of MCW and EP, and produces gas which is helpful for the formation of an intumescent char. Moreover, the residue at high temperature does not release any flammable gas and is a good insulation layer on the surface of the sample, which protects the underlying material in a fire.  相似文献   

13.
In this work, the flame‐retardant high‐density polyethylene/ethylene vinyl‐acetate copolymer (HDPE/EVA) composites have been prepared by using expandable graphite (EG) as a flame retardant combined with ammonium polyphosphate (APP) and red phosphorus masterbatch (RPM) as synergists. The synergistic effects of these additives on the flammability behaviors of the filled composites have been investigated by limiting oxygen index, UL‐94 test, cone calorimeter test, thermogravimetric analysis (TGA), Fourier‐transform infrared (FTIR), and scanning electron microscopy. The results show that APP and RPM are good synergists for improving the flame retardancy of EG‐filled HDPE/EVA composites. The data from TGA and FTIR spectra also indicate the synergistic effects of APP and RPM with EG considerably enhance the thermal degradation temperatures but decrease the charred residues of the HDPE/EVA/EG composites because the flame‐retardant mechanism has changed. The morphological observations present positive evidences that the synergistic effects take place in APP and RPM with EG in flame‐retardant EG‐filled HDPE/EVA/EG composites. The formation of stable and compact charred residues promoted by APP and RPM with EG acts as effective heat barriers and thermal insulations, which improves the flame‐retardant performances and prevents the underlying polymer materials from burning. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
A comparison of melamine salt of pentaerythritol phosphate (MPP), and a synergistic agents, iron–graphene (IG) was performed in thermoplastic polyurethane (TPU) by masterbatch‐melt blending on thermal and flame retardant properties. The flame retardant properties of TPU composites were characterized by limiting oxygen index (LOI), UL 94 and cone calorimeter test (CCT). The CCT results revealed that IG can significantly enhance flame retardant properties of MPP in TPU. The peak heat release rate of neat TPU and flame retardant TPU/MPP composites decreased from 2192.6 and 226.7 to 187.2 kW/m2 compared with that of TPU containing 0.25 wt% IG. The thermal stability and thermal decomposition of TPU composites were characterized by thermogravimetric analysis (TGA) and thermogravimetric/Fourier infrared spectrum analysis (TG‐IR). The results indicated IG and MPP can improve the thermal stability of TPU. The formation of thermal conductive network by IG can promote the decomposition of MPP into nonflammable melt, which can play the role of heat barrier and restrict the diffusion of fuels into combustion zone and access of oxygen to the unburned fuels. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Novel intumescent flame-retardant poly(lactic acid) (PLA/IFR)/organo-modified α-zirconium phosphate(OZrP) nanocomposites were prepared via incorporation of charring agent (CA), ammonium polyphosphate (APP) and OZrP into PLA. OZrP was synthesized directly by a solvent thermal method. The morphological characterization of PLA/IFR/OZrP nanocomposites was conducted by wide angle X-ray diffraction (WXRD) and transmission electron microscopy (TEM). The effect of the OZrP on flame retardancy and the thermal stability of PLA/IFR composites were studied by thermogravimetric analysis (TGA), limiting oxygen index (LOI), vertical burning test (UL-94) and cone calorimeter test. The TGA data illustrated that the OZrP could increase the residue and significantly improve the flame retardancy of PLA/IFR/OZrP nanocomposites showing an excellent synergistic effect. The addition of OZrP to the flame-retardant PLA increases the LOI and enhances the UL-94 rating. Cone calorimeter tests gave clear evidence that the incorporation of OZrP into PLA/IFR composites resulted in the significant reduction of the heat release rate (HRR), low total heat release (THR) and high amount of char residues during combustion. The flame-retardant mechanism of PLA/IFR/OZrP nanocomposites may correspond to the intumescent flame-retardant mechanism and catalyzed carbonization mechanism caused by OZrP.  相似文献   

16.
The photoinitiated crosslinking of halogen‐free flame retarded linear low density polyethylene/poly(ethylene‐co‐vinyl acetate) blends (LLDPE/EVA) with the intumescent flame retardant (IFR) of phosphorous‐nitrogen compound (NP) in the presence of photoinitiator and crosslinker and their characterization of related properties have been investigated by gel determination, heat extension test, cone calorimeter test (CCT), thermogravimetric analysis (TGA), Fourier transfer infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), mechanical properties measurements, limiting oxygen index (LOI), UL‐94, and water resistance test. The data from the gel content and heat extension rate (HER) show that the LLDPE/EVA/IFR blends filled with NP are readily crosslinked to a gel content of above 75% and the HER values reach about 50% by UV‐irradiation of 5 sec under suitable amount of photoinitiator and crosslinker. The data obtained from the CCT and LOI indicate that photocrosslinking can considerably decrease the heat release rates (HRR) by 10–15%, prolongate the combustion time, and increase two LOI values for the LLDPE/EVA/NP blends UV irradiated for 5 sec. The results from TGA and the dynamic FTIR spectra give the evidence that the photocrosslinked LLDPE/EVA/NP samples show slower thermal degradation rate and higher thermo‐oxidative degradation temperature than the uncrosslinked LLDPE/EVA/NP samples. The morphological structures of charred residues observed by SEM give the positive evidence that the compact charred layers formed from the photocrosslinked LLDPE/EVA/NP samples play an important role in the enhancement of flame retardant and thermal properties. The data from the mechanical tests and water‐resistant measurements show that photocrosslinking can considerably improve the mechanical and water‐resistant properties of LLDPE/EVA/NP samples. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Organically modified montmorillonite (OMMT) was used as synergist to enhance the flame-retardant and mechanical properties of poly(butylene succinate)/intumescent flame retardant (PBS/IFR) composites. The flame-retardant, thermal degradation and combustion properties of PBS and its flame-retardant composites were characterized by limiting oxygen index (LOI) test, vertical burning (UL-94) test, thermogravimetric analysis, cone calorimeter and scanning electron microscopy, respectively. The results indicate that PBS/IFR composites exhibit excellent flame retardance when OMMT is at an appropriate content. PBS/IFR composite with 20 wt% IFR and 1.5 wt% OMMT has an LOI of 40.1% and can pass the UL-94 V0 rating. The synergistic effect between OMMT and IFR on the flame-retardant properties of PBS depends on the content of OMMT, and excessive OMMT diminish this synergistic effect. The possible flame-retardant mechanism of OMMT on PBS/IFR composite is proposed. The results of mechanical test also indicate that OMMT can effectively increase the notched impact strength of PBS/IFR composites.  相似文献   

18.
A novel functionalized α-zirconium phosphate (F-ZrP) modified with intumescent flame retardant was synthesized by co-precipitation method and characterized. Poly (lactic acid) (PLA)/F-ZrP nanocomposites were prepared by melt blending method. The thermal stability and combustion behavior of PLA/F-ZrP nanocomposites were investigated by thermogravimetric analysis (TGA), limiting oxygen index (LOI), vertical burning test (UL-94), scanning electronic microscopy (SEM), and cone calorimeter test (CCT). The results showed that the addition of flame retardant F-ZrP slightly affect PLA's thermal stability, but significantly improve the flame retardancy of PLA composites. In comparison with neat PLA, the LOI value of PLA/F-ZrP was increased from 19.0 to 26.5, and the UL-94 rating was enhanced to V-0 as the loading of F-ZrP at 10%. SEM results suggested the introduction of F-ZrP in the PLA system can form compact intumescent char layer during burning. All these results showed that the F-ZrP performed good flame retardancy for PLA.  相似文献   

19.
A novel flame retardant (PSiN), containing silicon and nitrogen, was synthesized using N-(β-aminoethyl)-γ-aminopropylmethyldimethoxysilane and diphenylsilanediol through solution polycondensation and it was added to polycarbonate (PC). The structure and thermal properties of PSiN were characterized by fourier transform infrared spectroscopy and thermogravimetric analysis (TG) tests. The effect of PSiN on the flame retardancy and thermal behaviors of PC was investigated by limited oxygen index (LOI), vertical burning test (UL-94), and TG tests. The results showed that the flame retardancy and the thermal stability of PC are improved with the addition of PSiN. When 1 mass% PSiN and 0.5 mass% diphenylsulfone sulfonate (KSS) are incorporated, the LOI value of PC is found to be 46, and class V-0 of UL-94 test is passed. The char structure observed by scanning electron microscopy indicated that the surface of the char for PC/KSS/PSiN system holds a firmer and denser char structure when compared with neat PC and PC/KSS system.  相似文献   

20.
A phosphorus-containing flame retardant, 4-(5,5-dimethyl-2-oxo-1,3,2-dioxaphosphorinan-2-yloxymethyl)-2,6,7-trioxa-1-phospha-bicyclo[2.2.2]octane-1-oxide (MOPO), was synthesized successfully and characterized. The flame retardancy and thermal behavior of a new intumescent flame-retardant (IFR) system for EVA, which was made of MOPO and ammonium polyphosphate (APP), were investigated by limiting oxygen index (LOI) test, vertical burning test (UL-94), cone calorimeter, and thermogravimetric analysis (TGA). An LOI value of 28.4 and UL-94 V-0 rating can be achieved when the total loading of MOPO and APP was 30 wt.%. The results from cone calorimeter indicate that both the heat release rate (HRR) and the total heat release (THR) of IFR-EVA decreased significantly compared with those of neat EVA. TG curves showed that the amount of residues increased significantly when intumescent additives were added; it also could be found that the LOI values increased with the increase in char residues. Meanwhile, morphology of the residues obtained from burning IFR-EVA in LOI test was studied through the SEM observations and rich compact char layers could explain the excellent flame retardance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号