首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Laumon moduli spaces are certain smooth closures of the moduli spaces of maps from the projective line to the flag variety of GL n . We construct the action of the quantum loop algebra Uv(L\mathfraksln){U_v({\bf L}\mathfrak{sl}_n)} in the K-theory of Laumon spaces by certain natural correspondences. Also we construct the action of the quantum toroidal algebra ü v ([^(\mathfraksl)]n){(\widehat{\mathfrak{sl}}_n)} in the K-theory of the affine version of Laumon spaces.  相似文献   

2.
This paper contains a proof of a conjecture of Braverman concerning Laumon quasiflag spaces. We consider the generating function Z(m), whose coefficients are the integrals of the equivariant Chern polynomial (with variable m) of the tangent bundles of the Laumon spaces. We prove Braverman’s conjecture, which states that Z(m) coincides with the eigenfunction of the Calogero-Sutherland hamiltonian, up to a simple factor which we specify. This conjecture was inspired by the work of Nekrasov in the affine [^( \mathfrak sl)]n\widehat{ {\mathfrak {sl}}}_{n} setting, where a similar conjecture is still open.  相似文献   

3.
This paper continues the study of associative and Lie deep matrix algebras, DM(X,\mathbbK){\mathcal{DM}}(X,{\mathbb{K}}) and \mathfrakgld(X,\mathbbK){\mathfrak{gld}}(X,{\mathbb{K}}), and their subalgebras. After a brief overview of the general construction, balanced deep matrix subalgebras, BDM(X,\mathbbK){\mathcal{BDM}}(X,{\mathbb{K}}) and \mathfrakbld(X,\mathbbK){\mathfrak{bld}}(X,{\mathbb{K}}), are defined and studied for an infinite set X. The global structures of these two algebras are studied, devising a depth grading on both as well as determining their ideal lattices. In particular, \mathfrakbld(X,\mathbbK){\mathfrak{bld}}(X,{\mathbb{K}}) is shown to be semisimple. The Lie algebra \mathfrakbld(X,\mathbbK){\mathfrak{bld}}(X,{\mathbb{K}}) possesses a deep Cartan decomposition and is locally finite with every finite subalgebra naturally enveloped by a semi-direct product of \mathfraksln{\mathfrak{{sl}_n}}’s. We classify all associative bilinear forms on \mathfraksl2\mathfrakd{\mathfrak{sl}_2\mathfrak{d}} (a natural depth analogue of \mathfraksl2{\mathfrak{{sl}_2}}) and \mathfrakbld{\mathfrak{bld}}.  相似文献   

4.
In this note, we construct a 2-basic set of the alternating group \mathfrakAn{\mathfrak{A}_n}. To do this, we construct a 2-basic set of the symmetric group \mathfrakSn{\mathfrak{S}_n} with an additional property, such that its restriction to \mathfrakAn{\mathfrak{A}_n} is a 2-basic set. We adapt here a method developed by Brunat and Gramain (J. Reine Angew. Math., to appear) for the case when the characteristic is odd. One of the main tools is the generalized perfect isometries defined by Külshammer et al. (Invent. Math. 151, 513–552, (2003)).  相似文献   

5.
Let ${\mathfrak{g}}Let \mathfrakg{\mathfrak{g}} be a finite dimensional simple Lie algebra over an algebraically closed field \mathbbK\mathbb{K} of characteristic 0. Let \mathfrakg\mathbbZ{\mathfrak{g}}_{{\mathbb{Z}}} be a Chevalley ℤ-form of \mathfrakg{\mathfrak{g}} and \mathfrakg\Bbbk=\mathfrakg\mathbbZ?\mathbbZ\Bbbk{\mathfrak{g}}_{\Bbbk}={\mathfrak{g}}_{{\mathbb{Z}}}\otimes _{{\mathbb{Z}}}\Bbbk, where \Bbbk\Bbbk is the algebraic closure of  \mathbbFp{\mathbb{F}}_{p}. Let G\BbbkG_{\Bbbk} be a simple, simply connected algebraic \Bbbk\Bbbk-group with \operatornameLie(G\Bbbk)=\mathfrakg\Bbbk\operatorname{Lie}(G_{\Bbbk})={\mathfrak{g}}_{\Bbbk}. In this paper, we apply recent results of Rudolf Tange on the fraction field of the centre of the universal enveloping algebra U(\mathfrakg\Bbbk)U({\mathfrak{g}}_{\Bbbk}) to show that if the Gelfand–Kirillov conjecture (from 1966) holds for \mathfrakg{\mathfrak{g}}, then for all p≫0 the field of rational functions \Bbbk (\mathfrakg\Bbbk)\Bbbk ({\mathfrak{g}}_{\Bbbk}) is purely transcendental over its subfield \Bbbk(\mathfrakg\Bbbk)G\Bbbk\Bbbk({\mathfrak{g}}_{\Bbbk})^{G_{\Bbbk}}. Very recently, it was proved by Colliot-Thélène, Kunyavskiĭ, Popov, and Reichstein that the field of rational functions \mathbbK(\mathfrakg){\mathbb{K}}({\mathfrak{g}}) is not purely transcendental over its subfield \mathbbK(\mathfrakg)\mathfrakg{\mathbb{K}}({\mathfrak{g}})^{\mathfrak{g}} if \mathfrakg{\mathfrak{g}} is of type B n , n≥3, D n , n≥4, E6, E7, E8 or F4. We prove a modular version of this result (valid for p≫0) and use it to show that, in characteristic 0, the Gelfand–Kirillov conjecture fails for the simple Lie algebras of the above types. In other words, if \mathfrakg{\mathfrak{g}} is of type B n , n≥3, D n , n≥4, E6, E7, E8 or F4, then the Lie field of \mathfrakg{\mathfrak{g}} is more complicated than expected.  相似文献   

6.
We investigate splitting number and reaping number for the structure (ω) ω of infinite partitions of ω. We prove that \mathfrakrdnon(M),non(N),\mathfrakd{\mathfrak{r}_{d}\leq\mathsf{non}(\mathcal{M}),\mathsf{non}(\mathcal{N}),\mathfrak{d}} and \mathfraksd 3 \mathfrakb{\mathfrak{s}_{d}\geq\mathfrak{b}} . We also show the consistency results ${\mathfrak{r}_{d} > \mathfrak{b}, \mathfrak{s}_{d} < \mathfrak{d}, \mathfrak{s}_{d} < \mathfrak{r}, \mathfrak{r}_{d} < \mathsf{add}(\mathcal{M})}${\mathfrak{r}_{d} > \mathfrak{b}, \mathfrak{s}_{d} < \mathfrak{d}, \mathfrak{s}_{d} < \mathfrak{r}, \mathfrak{r}_{d} < \mathsf{add}(\mathcal{M})} and ${\mathfrak{s}_{d} > \mathsf{cof}(\mathcal{M})}${\mathfrak{s}_{d} > \mathsf{cof}(\mathcal{M})} . To prove the consistency \mathfrakrd < add(M){\mathfrak{r}_{d} < \mathsf{add}(\mathcal{M})} and \mathfraksd < cof(M){\mathfrak{s}_{d} < \mathsf{cof}(\mathcal{M})} we introduce new cardinal invariants \mathfrakrpair{\mathfrak{r}_{pair}} and \mathfrakspair{\mathfrak{s}_{pair}} . We also study the relation between \mathfrakrpair, \mathfrakspair{\mathfrak{r}_{pair}, \mathfrak{s}_{pair}} and other cardinal invariants. We show that cov(M),cov(N) £ \mathfrakrpair £ \mathfraksd,\mathfrakr{\mathsf{cov}(\mathcal{M}),\mathsf{cov}(\mathcal{N})\leq\mathfrak{r}_{pair}\leq\mathfrak{s}_{d},\mathfrak{r}} and \mathfraks £ \mathfrakspairnon(M),non(N){\mathfrak{s}\leq\mathfrak{s}_{pair}\leq\mathsf{non}(\mathcal{M}),\mathsf{non}(\mathcal{N})} .  相似文献   

7.
8.
Let \mathfrakg \mathfrak{g} be a reductive Lie algebra and \mathfrakk ì \mathfrakg \mathfrak{k} \subset \mathfrak{g} be a reductive in \mathfrakg \mathfrak{g} subalgebra. A ( \mathfrakg,\mathfrakk \mathfrak{g},\mathfrak{k} )-module M is a \mathfrakg \mathfrak{g} -module for which any element mM is contained in a finite-dimensional \mathfrakk \mathfrak{k} -submodule of M. We say that a ( \mathfrakg,\mathfrakk \mathfrak{g},\mathfrak{k} )-module M is bounded if there exists a constant C M such that the Jordan-H?lder multiplicities of any simple finite-dimensional \mathfrakk \mathfrak{k} -module in every finite-dimensional \mathfrakk \mathfrak{k} -submodule of M are bounded by C M . In the present paper we describe explicitly all reductive in \mathfraks\mathfrakln \mathfrak{s}{\mathfrak{l}_n} subalgebras \mathfrakk \mathfrak{k} which admit a bounded simple infinite-dimensional ( \mathfraks\mathfrakln,\mathfrakk \mathfrak{s}{\mathfrak{l}_n},\mathfrak{k} )-module. Our technique is based on symplectic geometry and the notion of spherical variety. We also characterize the irreducible components of the associated varieties of simple bounded ( \mathfrakg,\mathfrakk \mathfrak{g},\mathfrak{k} )-modules.  相似文献   

9.
Let U( \mathfrakg,e ) U\left( {\mathfrak{g},e} \right) be the finite W-algebra associated with a nilpotent element e in a complex simple Lie algebra \mathfrakg = \textLie(G) \mathfrak{g} = {\text{Lie}}(G) and let I be a primitive ideal of the enveloping algebra U( \mathfrakg ) U\left( \mathfrak{g} \right) whose associated variety equals the Zariski closure of the nilpotent orbit (Ad G) e. Then it is known that I = \textAn\textnU( \mathfrakg )( Qe ?U( \mathfrakg,e )V ) I = {\text{An}}{{\text{n}}_{U\left( \mathfrak{g} \right)}}\left( {{Q_e}{ \otimes_{U\left( {\mathfrak{g},e} \right)}}V} \right) for some finite dimensional irreducible U( \mathfrakg,e ) U\left( {\mathfrak{g},e} \right) -module V, where Q e stands for the generalised Gelfand–Graev \mathfrakg \mathfrak{g} -module associated with e. The main goal of this paper is to prove that the Goldie rank of the primitive quotient U( \mathfrakg )
/ I {{{U\left( \mathfrak{g} \right)}} \left/ {I} \right.} always divides dim V. For \mathfrakg = \mathfraks\mathfrakln \mathfrak{g} = \mathfrak{s}{\mathfrak{l}_n} , we use a theorem of Joseph on Goldie fields of primitive quotients of U( \mathfrakg ) U\left( \mathfrak{g} \right) to establish the equality \textrk( U( \mathfrakg ) / I ) = dimV {\text{rk}}\left( {{{{U\left( \mathfrak{g} \right)}} \left/ {I} \right.}} \right) = \dim V . We show that this equality continues to hold for \mathfrakg \ncong \mathfraks\mathfrakln \mathfrak{g} \ncong \mathfrak{s}{\mathfrak{l}_n} provided that the Goldie field of U( \mathfrakg ) / I {{{U\left( \mathfrak{g} \right)}} \left/ {I} \right.} is isomorphic to a Weyl skew-field and use this result to disprove Joseph’s version of the Gelfand–Kirillov conjecture formulated in the mid-1970s.  相似文献   

10.
When \mathbbK{\mathbb{K}} is an arbitrary field, we study the affine automorphisms of Mn(\mathbbK){{\rm M}_n(\mathbb{K})} that stabilize GLn(\mathbbK){{\rm GL}_n(\mathbb{K})}. Using a theorem of Dieudonné on maximal affine subspaces of singular matrices, this is easily reduced to the known case of linear preservers when n > 2 or # ${\mathbb{K} > 2}${\mathbb{K} > 2}. We include a short new proof of the more general Flanders theorem for affine subspaces of Mp,q(\mathbbK){{\rm M}_{p,q}(\mathbb{K})} with bounded rank. We also find that the group of affine transformations of M2(\mathbbF2){{\rm M}_2(\mathbb{F}_2)} that stabilize GL2(\mathbbF2){{\rm GL}_2(\mathbb{F}_2)} does not consist solely of linear maps. Using the theory of quadratic forms over \mathbbF2{\mathbb{F}_2}, we construct explicit isomorphisms between it, the symplectic group Sp4(\mathbbF2){{\rm Sp}_4(\mathbb{F}_2)} and the symmetric group \mathfrakS6{\mathfrak{S}_6}.  相似文献   

11.
Let V be a 2m-dimensional symplectic vector space over an algebraically closed field K. Let $ \mathfrak{B}_n^{(f)} Let V be a 2m-dimensional symplectic vector space over an algebraically closed field K. Let \mathfrakBn(f) \mathfrak{B}_n^{(f)} be the two-sided ideal of the Brauer algebra \mathfrakBn( - 2m ) {\mathfrak{B}_n}\left( { - 2m} \right) over K generated by e 1 e 3⋯ e 2f-1 where 0 ≤ f ≤ [n/2]. Let HTf ?n \mathcal{H}\mathcal{T}_f^{ \otimes n} be the subspace of partial-harmonic tensors of valence f in V n . In this paper we prove that dimHTf ?n \mathcal{H}\mathcal{T}_f^{ \otimes n} and dim \textEn\textdK\textSp(V)( V ?n \mathord
/ \vphantom V ?n V ?n V ?n\mathfrakBn(f) ) {\text{En}}{{\text{d}}_{K{\text{Sp}}(V)}}\left( {{{{V^{ \otimes n}}} \mathord{\left/{\vphantom {{{V^{ \otimes n}}} {{V^{ \otimes n}}}}} \right.} {{V^{ \otimes n}}}}\mathfrak{B}_n^{(f)}} \right) are both independent of K, and the natural homomorphism from \mathfrakBn( - 2m ) \mathord/ \vphantom ( - 2m ) \mathfrakBn(f) \mathfrakBn(f) {\mathfrak{B}_n}{{\left( { - 2m} \right)} \mathord{\left/{\vphantom {{\left( { - 2m} \right)} {\mathfrak{B}_n^{(f)}}}} \right.} {\mathfrak{B}_n^{(f)}}} to \textEn\textdK\textSp(V)( V ?n \mathord/ \vphantom V ?n V ?n V ?n\mathfrakBn(f) ) {\text{En}}{{\text{d}}_{K{\text{Sp}}(V)}}\left( {{{{V^{ \otimes n}}} \mathord{\left/{\vphantom {{{V^{ \otimes n}}} {{V^{ \otimes n}}}}} \right.} {{V^{ \otimes n}}}}\mathfrak{B}_n^{(f)}} \right) is always surjective. We show that HTf ?n \mathcal{H}\mathcal{T}_f^{ \otimes n} has a Weyl filtration and is isomorphic to the dual of V ?n\mathfrakBn(f) \mathord/ \vphantom V ?n\mathfrakBn(f) V V ?n\mathfrakBn( f + 1 ) {{{{V^{ \otimes n}}\mathfrak{B}_n^{(f)}} \mathord{\left/{\vphantom {{{V^{ \otimes n}}\mathfrak{B}_n^{(f)}} V}} \right.} V}^{ \otimes n}}\mathfrak{B}_n^{\left( {f + 1} \right)} as an \textSp(V) - ( \mathfrakBn( - 2m ) \mathord/ \vphantom ( - 2m ) \mathfrakBn( f + 1 ) \mathfrakBn( f + 1 ) ) {\text{Sp}}(V) - \left( {{\mathfrak{B}_n}{{\left( { - 2m} \right)} \mathord{\left/{\vphantom {{\left( { - 2m} \right)} {\mathfrak{B}_n^{\left( {f + 1} \right)}}}} \right.} {\mathfrak{B}_n^{\left( {f + 1} \right)}}}} \right) -bimodule. We obtain an \textSp(V) - \mathfrakBn {\text{Sp}}(V) - {\mathfrak{B}_n} -bimodules filtration of V n such that each successive quotient is isomorphic to some ?( l) ?zg,l\mathfrakBn \nabla \left( \lambda \right) \otimes {z_{g,\lambda }}{\mathfrak{B}_n} with λ ⊢ n 2g, ℓ(λ)≤m and 0 ≤ g ≤ [n/2], where ∇(λ) is the co-Weyl module associated to λ and z g is an explicitly constructed maximal vector of weight λ. As a byproduct, we show that each right \mathfrakBn {\mathfrak{B}_n} -module zg,l\mathfrakBn {z_{g,\lambda }}{\mathfrak{B}_n} is integrally defined and stable under base change.  相似文献   

12.
We prove that the moduli space \mathfrakML{\mathfrak{M}_L} of Lüroth quartics in \mathbbP2{\mathbb{P}^2}, i.e. the space of quartics which can be circumscribed around a complete pentagon of lines modulo the action of PGL3 (\mathbbC){\mathrm{PGL}_3 (\mathbb{C})} is rational, as is the related moduli space of Bateman seven-tuples of points in \mathbbP2{\mathbb{P}^2}.  相似文献   

13.
14.
We study the singular homology (with field coefficients) of the moduli stack [`(\mathfrakM)]g, n{\overline{\mathfrak{M}}_{g, n}} of stable n-pointed complex curves of genus g. Each irreducible boundary component of [`(\mathfrakM)]g, n{\overline{\mathfrak{M}}_{g, n}} determines via the Pontrjagin–Thom construction a map from [`(\mathfrakM)]g, n{\overline{\mathfrak{M}}_{g, n}} to a certain infinite loop space whose homology is well understood. We show that these maps are surjective on homology in a range of degrees proportional to the genus. This detects many new torsion classes in the homology of [`(\mathfrakM)]g, n{\overline{\mathfrak{M}}_{g, n}}.  相似文献   

15.
Let (R,\mathfrak m){(R,\mathfrak m)} be a noetherian, local ring with completion [^(R)]{\hat{R}} . We show that R ì [^(R)]{R \subset \hat{R}} satisfies the condition Going up if and only if there exists to every artinian R-module M with AnnR(M) ì \mathfrakp{{\rm Ann}_R(M) \subset \mathfrak{p}} a submodule U ì M{U \subset M} with AnnR(U)=\mathfrakp.{{\rm {Ann}}_R(U)=\mathfrak{p}.} This is further equivalent to R being formal catenary, to α(R) = 0 and to Hd\mathfrakq/\mathfrakp(R/\mathfrakp)=0{H^d_{\mathfrak{q}/\mathfrak{p}}(R/\mathfrak{p})=0} for all prime ideals \mathfrakp ì \mathfrakq \subsetneq \mathfrakm{\mathfrak{p} \subset \mathfrak{q} \subsetneq \mathfrak{m}} where d = dim(R/\mathfrakp){d = {\rm {dim}}(R/\mathfrak{p})}.  相似文献   

16.
The cohomology H \mathfrakg\mathfrak{g} ) of the tangent Lie algebra \mathfrakg\mathfrak{g} of the group G with coefficients in the one-dimensional representation \mathfrakg\mathfrak{g} \mathbbK\mathbb{K} defined by [(W)\tilde] \mathfrakg \tilde \Omega _\mathfrak{g} of H 1(G/ \mathfrakg\mathfrak{g} .  相似文献   

17.
We generalize a result of Kostant and Wallach concerning the algebraic integrability of the Gelfand-Zeitlin vector fields to the full set of strongly regular elements in \mathfrakg\mathfrakl \mathfrak{g}\mathfrak{l} (n, ℂ). We use decomposition classes to stratify the strongly regular set by subvarieties XD {X_\mathcal{D}} . We construct an étale cover [^(\mathfrakg)]D {\hat{\mathfrak{g}}}_\mathcal{D} of XD {X_\mathcal{D}} and show that XD {X_\mathcal{D}} and [^(\mathfrakg)]D {\hat{\mathfrak{g}}}_\mathcal{D} are smooth and irreducible. We then use Poisson geometry to lift the Gelfand-Zeitlin vector fields on XD {X_\mathcal{D}} to Hamiltonian vector fields on [^(\mathfrakg)]D {\hat{\mathfrak{g}}}_\mathcal{D} and integrate these vector fields to an action of a connected, commutative algebraic group.  相似文献   

18.
By using the concept of weight graph associated to nonsplit complex nilpotent Lie algebras \mathfrakg\mathfrak{g}, we find necessary and sufficient conditions for a semidirect product \mathfrakg?? Ti\mathfrak{g}\overrightarrow{\oplus } T_{i} to be two-step solvable, where $T_{i}TT over \mathfrakg\mathfrak{g} which induces a decomposition of \mathfrakg\mathfrak{g} into one-dimensional weight spaces without zero weights. In particular we show that the semidirect product of such a Lie algebra with a maximal torus of derivations cannot be itself two-step solvable. We also obtain some applications to rigid Lie algebras, as a geometrical proof of the nonexistence of two-step nonsplit solvable rigid Lie algebras in dimensions n\geqslant 3n\geqslant 3.  相似文献   

19.
Exact sequences of Feigin–Stoyanovsky’s type subspaces for affine Lie algebra \mathfraksl(l+1,\mathbbC)[\tilde]\mathfrak{sl}(l+1,\mathbb{C})^{\widetilde{}} lead to systems of recurrence relations for formal characters of those subspaces. By solving the corresponding system for \mathfraksl(3,\mathbbC)[\tilde]\mathfrak{sl}(3,\mathbb{C})^{\widetilde{}}, we obtain a new family of character formulas for all Feigin–Stoyanovsky’s type subspaces at the general level.  相似文献   

20.
Let R be a noetherian ring, \mathfraka{\mathfrak{a}} an ideal of R, and M an R-module. We prove that for a finite module M, if Hi\mathfraka(M){{\rm H}^{i}_{\mathfrak{a}}(M)} is minimax for all i ≥ r ≥ 1, then Hi\mathfraka(M){{\rm H}^{i}_{\mathfrak{a}}(M)} is artinian for i ≥ r. A local–global principle for minimax local cohomology modules is shown. If Hi\mathfraka(M){{\rm H}^{i}_{\mathfrak{a}}(M)} is coatomic for i ≤ r (M finite) then Hi\mathfraka(M){{\rm H}^{i}_{\mathfrak{a}}(M)} is finite for i ≤ r. We give conditions for a module which is locally minimax to be a minimax module. A non-vanishing theorem and some vanishing theorems are proved for local cohomology modules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号