首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The kinetics of adsorption and desorption of gold atoms from the surface of a thin (<2 nm) oxide film grown on a textured W ribbon with the preferred emergence of the (100) face is studied using termal desorption spectrometry in a wide range of coatings. A single desorption phase is observed in the spectra of termal desorption of Au atoms from oxidized W. The activation energy of desorption of Au atoms from tungsten oxides is lower than the gold sublimation heat (it amounts to E = 3.1 eV for the concentration of adsorbate atoms on the surface corresponding to coverage θ s = 2.38). The gold film on oxidized tungsten at room temperature grows in the form of 3D islands. The sticking coefficient for gold atoms at T = 300 K is close to unity in the coverage range 0.5 < θ s < 2.5.  相似文献   

2.
Thermal desorption of CO is induced by bombarding an Fe(110) surface with pulses of a neodymium glass laser. The maximum amplitude of the desorption signal is recorded by a mass spectrometer as a function of the laser pulse intensity and of the CO coverage for both single pulses and sequences of pulses. Since the half width of the laser pulses is only 30 ns the shape of the desorption signal is mainly determined by the time-of-flight of the desorbed particles. There is strong evidence that the latter obey a Maxwell-Boltzmann distribution of temperature Td, identical in the low temperature range with the maximum surface temperature Ts. Above Ts = 600 K, however, Td is smaller than Ts. The experimental observations are analyzed successfully with the first order rate equation for desorption.  相似文献   

3.
The strain characteristics of nanocrystalline niobium are measured in the temperature range 4.2–300 K. It is shown that the development of a strong local deformation with clearly delineated macroscopic slip bands occurs at 4.2 K and 10 K. The thermal effects at a stress jump observed upon transition of the sample (or a niobium strip placed close to the sample) from the superconducting state to the normal state are estimated. It is demonstrated that the temperature dependence of the yield point σs(T) can be divided into three portions: two portions (T<10 K and T>70 K) with a slight change in σs and the third portion with a strong dependence σs(T). The strain characteristics of polycrystals with nano-and larger-sized grains are compared with those of single crystals.  相似文献   

4.
In the mixed state of superconductors (H c1?H?H c2) the penetration of microwaves is governed by both, complex conductivity σ(T) and driven oscillation of vortices. In this paper, we show that an effective microwave conductivity can be derived and used to fit the field dependences of the surface resistanceR s. The fit parameter is the upper critical field. Measurements on single crystals YBa2Cu3O7-δ were made in magnetic fields (H∥c) up to 2.25 T, and in the temperature range from 70–100 K. The critical temperature for mean field superconductivity appears to be 89.3 K, while the apparent onset in the curve ofR s(T) appears at about 92 K. The magnetic dependences ofR s clearly demonstrate that one can separate the regions of mean field superconductivity from the region of fluctuations.  相似文献   

5.
The interactions between a molecular beam of SiO(g) and a clean and an oxidized tungsten surface were examined in the surface temperature range 600 to 1700 K by mass spectrometrically determined sticking probabilities, by flash desorption mass spectrometry (FDMS) and by Auger electron spectroscopy (AES). The sticking probability, S, of SiO has been determined as a function of coverage and of surface temperature for the clean and the oxidized tungsten surface. Over the temperature range studied and at zero coverage S = 1.0 and 0.88 for the clean and oxidized tungsten surfaces respectively. The results are consistent with both FDMS and AES. For coverage up to one monolayer there is one major adsorption state of SiO on the clean tungsten surface. FDMS shows that Tm = constant (Tm is the surface temperature at which the desorption rate is maximum) and that desorption from this state is described by a simple first order desorption process with activation energy, Ed = 85.3 kcal mole?1 and pre-exponential factor, ν = 2.1 × 1014 sec?1. AES shows that the 92 eV peak characteristic of silicon dominates. In contrast on the oxidized tungsten surface, Tm shifts to higher temperatures with increasing coverage. The data indicate a first order desorption process with a coverage dependent activation energy. At low coverage (θ ? 0.14) there is an adsorption state with Ed = 120 kcal mole?1 and ν = 7.6 × 1019, while at θ = 1.0, Ed = 141 kcal mole?1. This variation is interpreted as due to complex formation on the surface. AES shows that on oxidized tungsten, in contrast to clean tungsten, the dominant peaks occur at 64 and 78 eV, and these peaks are characteristic of higher oxidation states of silicon. Thus, it is concluded that SiO exists in different binding states on clean and oxidized tungsten surfaces.  相似文献   

6.
Experimental data are presented for the angular dependence of the relative flux, the mean energy and the speed ratio of deuterium molecules desorbing from a Ni(111) crystal surface at a surface temperature of Ts = 1143 K and at sulphur coverages ranging between 30% and less than 2% of a monolayer.The angular flux distribution is sharply peaked in the forward direction (cosdθwith 3 ? d ? 5) and the mean energy 〈E〉 of the desorbate depends strongly on the desorption angle θ. For normal desorption (θ = 0°) 〈E〉2k is about 700 K higher than Ts and for glancing angles (θ = 80°) it decreases to about 400 K below Ts The results obtained on sulphur free and sulphur covered Ni(111) surfaces are compared with our former data on polycrystalline nickel. The main differences in the kinetic features can be ascribed to the surface roughness. Accordingly, the angular distributions of flux, mean energy, and speed ratio, which deviate strongly from the Knudson and Maxwellian law, do not seem to depend considerably on sulphur coverage and surface structure. A qualitative explanation for these deviations is presented using the principle of detailed balancing.  相似文献   

7.
In this paper we report on the geometric structure of Ag films, deposited under UHV conditions and annealed at temperatures (Tan) ranging from 58 to 430 K, as deduced from UPS, AES, TDS and work function measurements of adsorbed xenon. The macroscopic work function of the bare films increases continuously from 4.25 eV (Tan = 60 K) to 4.72 eV (Tan = 330 K). Evidence is provided that coldly deposited Ag films are highly porous and that the pores persist up to Tan = 170 K, but are irreversibly healed between 170 and 250 K. The minimum thickness of the evaporated Ag films needed to develop these pores is found to be 50 Å. The width of the pores, which are most likely intercrystalline gaps, is estimated to be 5–15 Å. Besides the“macroscopic” pores the films contain atomic scale defects, which, in contrast to the pores, are healed continu- ously with increasing Tan. Films annealed at 330 K are composed of (111) grains with still a few percent of defect sites. The implications of these structural features on the adsorption properties of pyridine as well as on the interpretation of SERS results from such Ag films are dealt with in part II of this work.  相似文献   

8.
Measurements of the microwave surface impedance Z s (T) = R s (T) + iX s (T) and the complex conductivity σs(T) in the ab-plane of high-quality high-T c YBCO, BSCCO, TBCCO, and TBCO single crystals are analyzed. Experimental data of Z s (T) and σs(T) are compared with calculations based on a modified two-fluid model that includes a temperature-dependent quasiparticle scattering and a unique temperature variation of the density of superconducting carriers. We describe the agreement and disagreement of our analysis with the salient features of the experimental data. We review the existing microscopic models based on unconventional symmetry types of the order parameter and on novel quasiparticle relaxation mechanisms.  相似文献   

9.
The temperature dependences of the magnetization σ(T), magnetostriction λ(T), and linear thermal expansion coefficient α(T) of R 2Fe14B intermetallic compounds (R = Nd, Gd, Er, Lu) and of their hydrides R 2Fe14BH2.5 are studied. The magnetization was measured with a pendulum magnetometer within the temperature interval 77–700 K in a magnetic field H = 500 Oe. Magnetostriction and thermal expansion were measured using the tensometric technique in the temperature interval 77–420 K. It was established that Gd2Fe14BH2.5 undergoes a spin-reorientational (SR) transition at T SR = 235 K. In compounds with Nd and Er, anomalies associated with the SR transition were found in the σ(T), λ(T), and α(T) curves. The SR transition temperatures were refined and magnetic phase diagrams were constructed for the compounds studied. The α(T) curves of the R 2Fe14BH2.5 hydrides (R = Nd, Er) revealed anomalies of a nonmagnetic origin associated with hydrogen ordering in the crystal lattice of these compounds.  相似文献   

10.
J. Wang 《Surface science》2006,600(21):4855-4859
Presented are thermal desorption spectroscopy (TDS) and adsorption probability measurements of iso-butane on the Zn-terminated surface of ZnO. The initial adsorption probability, S0, decreases linearly from 0.57 to 0.22 (±0.02) with impact energy, Ei = 0.74-1.92 eV, and is independent of adsorption temperature, Ts = 91-114 K (±5 K), indicating non-activated molecular adsorption. The coverage, Θ, dependent adsorption probabilities, S(Θ), show a cross-over from adsorbate-assisted adsorption (S increases with Θ) to Kisliuk-like dynamics at about the desorption temperature of iso-butane bi-layers (∼110 K). Thus, the adsorption dynamics are precursor-mediated. The enhanced (gas-surface) mass-match, caused by forming a second layer of the alkane, leads to adsorbate-assisted adsorption. A direct fitting procedure of the TDS data yields a pre-exponential factor of 2.5 × 1013/s and a coverage dependent heat of adsorption of Ed(Θ) = 39 − 6 ∗ Θ + 2.5 ∗ exp(−Θ/0.07) kJ/mol.  相似文献   

11.
Isothermal desorption of hydrogen molecules from a W(110) surface atT s ~ 5 K upon rapid shuttering of the molecular beam is observed in a “black chamber” type of ultrahigh-vacuum apparatus. Desorption was detected from three different states, identified as a multilayer condensation state and physisorbed states in the form of a two-dimensional gas and a two-dimensional condensate. The distribution of the physisorbed molecules between these states depends on the intensity of the flux of molecules on the surface; this appears to be responsible for the anomalous decrease of the number of isothermally desorbed molecules as the flux increases.  相似文献   

12.
Influence of both substrate temperature, Ts, and annealing temperature, Ta, on the structural, electrical and microstructural properties of sputtered deposited Pt thin films have been investigated. X-ray diffraction results show that as deposited Pt films (Ts = 300, 400 °C) are preferentially oriented along (1 1 1) direction. A little growth both along (2 0 0) and (3 1 1) directions are also noticed in the as deposited Pt films. After annealing in air (Ta = 500-700 °C), films become strongly oriented along (1 1 1) plane. With annealing temperature, average crystallite size, D, of the Pt films increases and micro-strain, e, and lattice constant, a0, decreases. Residual strain observed in the as deposited Pt films is found to be compressive in nature while that in the annealed films is tensile. This change in the strain from compressive to tensile upon annealing is explained in the light of mismatch between the thermal expansion coefficients of the film material and substrate. Room temperature resistivity of Pt films is dependant on both the Ts and Ta of the films. Observed decrease in the film resistivity with Ta is discussed in terms of annihilation of film defects and grain-boundary. Scanning electron microscopic study reveals that as the annealing temperature increases film densification improves. But at an annealing temperature of ∼600 °C, pinholes appear on the film surface and the size of pinhole increases with further increase in the annealing temperature. From X-ray photoelectron spectroscopic analysis, existence of a thin layer of chemisorbed atomic oxygen is detected on the surfaces of the as deposited Pt films. Upon annealing, coverage of this surface oxygen increases.  相似文献   

13.
The adsorption of K on Pt(100) has been followed by thermal desorption spectroscopy (TDS) and Auger electron spectroscopy (AES); carbon monoxide was used as a probe for the modification of the chemical properties of K promoted surfaces. The role of subsequent adsorption of oxygen on the K modified surfaces has also been measured. For low potassium coverage (θK = 0 to 0.35), the mass-28 TDS peak temperature of adsorbed CO increases continuously with the K coverage, indicating an increase of the adsorption energy of CO which has been explained by a substantial charge donation from K into the 1 orbitals of CO via long range interactions through the platinum substrate. No oxygen uptake was detected after oxygen exposure at room temperature. For high potassium content (θK = 0.45 to 1), the mass-28 TDS peak temperature of coadsorbed CO is very narrow and remains constant at 680 K. We propose the formation of a COKPt surface complex which decomposes at 680 K, since K desorption is detected concomitantly to CO. On such K covered surfaces, the oxygen uptake is promoted, and it cancels the modifications of the surface properties induced by potassium.  相似文献   

14.
Plasma temperatures of the wall-stabilized low pressure Ar-arc, which has been optimized for maximum inversion density of the Ar II 4p- 4s laser transitions (i.e.kT e?4 eV), have been determined experimentally and compared with literature data. Ion temperature is obtained from the Doppler linewidths of Ar II transitions, which have been measured both spectroscopically and indirectly by measuring the gain of the 4880 å laser line. Neutral temperature is obtained from the Doppler linewidths of Ar-I-transitions and by relating fill pressure and calculated values of the corresponding gas density. Ion- and neutral temperature are reported to reach values ofT i? 30000 K andT a? 25 000 K, respectively. In the range under present concern (kT e?4 eV, 15≦jR [A cm?1]≦150)T i as well asT a is a function of the characteristic parameterjR alone (j=current density,R=tube radius).  相似文献   

15.
The adsorption of oxygen on Rh(111) at 100 K has been studied by TDS, AES, and LEED. Oxygen adsorbs in a disordered state at 100 K and orders irreversibly into an apparent (2 × 2) surface structure upon heating to T? 150 K. The kinetics of this ordering process have been measured by monitoring the intensity of the oxygen (1, 12) LEED beam as a function of time with a Faraday cup collector. The kinetic data fit a model in which the rate of ordering of oxygen atoms is proportional to the square of the concentration of disordered species due to the nature of adparticle interactions in building up an island structure. The activation energy for ordering is 13.5 ± 0.5 kcalmole. At higher temperatures, the oxygen undergoes a two-step irreversible disordering (T? 280 K) and dissolution (T?400K) process. Formation of the high temperature disordered state is impeded at high oxygen coverages. Analysis of the oxygen thermal desorption data, assuming second order desorption kinetics, yields values of 56 ± 2 kcal/ mole and 2.5 ± 10?3 cm2 s?1 for the activation energy of desorption and the pre-exponential factor of the desorption rate coefficient, respectively, in the limit of zero coverage. At non-zero coverages the desorption data are complicated by contributions from multiple states. A value for the initial sticking probability of 0.2 was determined from Auger data at 100 K applying a mobile precursor model of adsorption.  相似文献   

16.
17.
S. Funk 《Applied Surface Science》2007,253(17):7108-7114
We attempt to correlate qualitatively the surface structure with the chemical activity for a metal surface, Cr(1 1 0), and one of its surface oxides, Cr2O3(0 0 0 1)/Cr(1 1 0). The kinetics and dynamics of CO2 adsorption have been studied by low energy electron diffraction (LEED), Aug er electron spectroscopy (AES), and thermal desorption spectroscopy (TDS), as well as adsorption probability measurements conducted for impact energies of Ei = 0.1-1.1 eV and adsorption temperatures of Ts = 92-135 K. The Cr(1 1 0) surface is characterized by a square shaped LEED pattern, contamination free Cr AES, and a single dominant TDS peak (binding energy Ed = 33.3 kJ/mol, first order pre-exponential 1 × 1013 s−1). The oxide exhibits a hexagonal shaped LEED pattern, Cr AES with an additional O-line, and two TDS peaks (Ed = 39.5 and 30.5 kJ/mol). The initial adsorption probability, S0, is independent of Ts for both systems and decreases exponentially from 0.69 to 0.22 for Cr(1 1 0) with increasing Ei, with S0 smaller by ∼0.15 for the surface oxide. The coverage dependence of the adsorption probability, S(Θ), at low Ei is approx. independent of coverage (Kisliuk-shape) and increases initially at large Ei with coverage (adsorbate-assisted adsorption). CO2 physisorbs on both systems and the adsorption is non-activated and precursor mediated. Monte Carlo simulations (MCS) have been used to parameterize the beam scattering data. The coverage dependence of Ed has been obtained by means of a Redhead analysis of the TDS curves.  相似文献   

18.
The adsorption and reaction of Br2 with Ag(110) was studied with Auger electron spectroscopy, LEED, work function measurements and thermal desorption spectroscopy in the temperature range of 130–1000 K. Depending on Br coverage and crystal temperature, four different adsorption and reaction states could be detected. For fractional monolayer coverages, chemisorbed Br(ad) is found to be the most stable species. This adsorption state saturates for θ(Br) ? 0.75. In the chemisorption stage, two LEED patterns, a p(2 × 1) with θ(Br) ? 0.5 and a c(4 × 2) with θ(Br) ? 0.75, were observed. For higher Br2 exposures and T = 130 K a layer-by-layer growth of AgBr is detected. At higher temperature, T > 190 K, there is evidence for a transformation from a 2D growth mechanism of AgBr into a 3D agglomeration of larger AgBr cluster. Molecularly adsorbed.  相似文献   

19.
The dependence of electrical, σ, and thermal, κ, conductivities of metals on the electron temperature T e at high (~1 eV) T e values has been calculated. The two-temperature states for which the temperature T e of heated electrons exceeds the temperature T i of ions in the crystal lattice result from the excitation of electrons by femtosecond laser pulses. It is well known that the existence of empty d levels with a high density of states near the Fermi surface (as, e.g., in nickel, platinum, and iron) leads to a pronounced enhancement of the electrical resistance (Mott, 1936). This is due to an increase in the statistical factor related to the electron transitions to the empty states induced by collisions with phonons. It is found that the excitation of the electron subsystem significantly reduces the electron-phonon scattering to unoccupied d states since the chemical potential μ(T e ) rises above the upper edge of the d band. The decrease in the scattering probability leads to the anomalous behavior of the conductivity σel-ph, which increases with the temperature T e . Such a behavior turns out to be inverse with respect to the usual situation in condensed matter.  相似文献   

20.
《Surface science》1996,345(3):L39-L43
Thermal desorption spectra obtained after multilayer potassium depositions on graphite at Ts = 160 K reveal information about the formation and decomposition of potassium/graphite intercalation structures. Up to six desorption peaks were observed, of which three could be attributed to decomposition of three different intercalation-like surface structures. These structures are formed as the deposited potassium diffuses into the graphite substrate during the recording of the thermal desorption spectra. At submonolayer coverages, potassium desorbs in a sharp peak around 500 K, attributed to decomposition of a single intercalated potassium layer positioned between the two uppermost graphite layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号