首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
We prove global existence and uniqueness of solutions to a Cahn–Hilliard system with nonlinear viscosity terms and nonlinear dynamic boundary conditions. The problem is highly nonlinear, characterized by four nonlinearities and two separate diffusive terms, all acting in the interior of the domain or on its boundary. Through a suitable approximation of the problem based on abstract theory of doubly nonlinear evolution equations, existence and uniqueness of solutions are proved using compactness and monotonicity arguments. The asymptotic behaviour of the solutions as the diffusion operator on the boundary vanishes is also shown.  相似文献   

2.
Dissolution of stoichiometric multi-component particles in ternary alloys is an important process occurring during the heat treatment of as-cast aluminium alloys prior to hot extrusion. A mathematical model is proposed to describe such a process. In this model an equation is given to determine the position of the particle interface in time, using two diffusion equations which are coupled by nonlinear boundary conditions at the interface. Some results concerning existence, uniqueness, and monotonicity are given. Furthermore, for an unbounded domain an analytical approximation is derived. The main part of this work is the development of a numerical solution method. Finite differences are used on a grid which changes in time. The discretization of the boundary conditions is important to obtain an accurate solution. The resulting nonlinear algebraic system is solved by the Newton-Raphson method. Numerical experiments illustrate the accuracy of the numerical method. The numerical solution is compared with the analytical approximation.  相似文献   

3.
We study spatially semidiscrete and fully discrete two-scale composite finite element method for approximations of the nonlinear parabolic equations with homogeneous Dirich-let boundary conditions in a convex polygonal domain in the plane.This new class of finite elements,which is called composite finite elements,was first introduced by Hackbusch and Sauter[Numer.Math.,75(1997),pp.447-472]for the approximation of partial differential equations on domains with complicated geometry.The aim of this paper is to introduce an efficient numerical method which gives a lower dimensional approach for solving par-tial differential equations by domain discretization method.The composite finite element method introduces two-scale grid for discretization of the domain,the coarse-scale and the fine-scale grid with the degrees of freedom lies on the coarse-scale grid only.While the fine-scale grid is used to resolve the Dirichlet boundary condition,the dimension of the finite element space depends only on the coarse-scale grid.As a consequence,the resulting linear system will have a fewer number of unknowns.A continuous,piecewise linear composite finite element space is employed for the space discretization whereas the time discretization is based on both the backward Euler and the Crank-Nicolson methods.We have derived the error estimates in the L∞(L2)-norm for both semidiscrete and fully discrete schemes.Moreover,numerical simulations show that the proposed method is an efficient method to provide a good approximate solution.  相似文献   

4.
The purpose of the present paper is to introduce a method, probably for the first time, to predict the multiplicity of the solutions of nonlinear boundary value problems. This procedure can be easily applied on nonlinear ordinary differential equations with boundary conditions. This method, as will be seen, besides anticipating of multiplicity of the solutions of the nonlinear differential equations, calculates effectively the all branches of the solutions (on the condition that, there exist such solutions for the problem) analytically at the same time. In this manner, for practical use in science and engineering, this method might give new unfamiliar class of solutions which is of fundamental interest and furthermore, the proposed approach convinces to apply it on nonlinear equations by today’s powerful software programs so that it does not need tedious stages of evaluation and can be used without studying the whole theory. In fact, this technique has new point of view to well-known powerful analytical method for nonlinear differential equations namely homotopy analysis method (HAM). Everyone familiar to HAM knows that the convergence-controller parameter plays important role to guarantee the convergence of the solutions of nonlinear differential equations. It is shown that the convergence-controller parameter plays a fundamental role in the prediction of multiplicity of solutions and all branches of solutions are obtained simultaneously by one initial approximation guess, one auxiliary linear operator and one auxiliary function. The validity and reliability of the method is tested by its application to some nonlinear exactly solvable differential equations which is practical in science and engineering.  相似文献   

5.
Approximations are derived for both nonlinear heat equations and singularly perturbed nonlinear wave equations with highly oscillating random force on boundary and strong interaction. By a diffusion approximation method, if the interaction is large and the singular perturbation is small enough, the approximation of the nonlinear wave equation is an one dimensional stochastic ordinary differential equation with white noise from the boundary which is exactly the same as that of the nonlinear heat equation.  相似文献   

6.
Globally convergent nonlinear relaxation methods are considered for a class of nonlinear boundary value problems (BVPs), where the discretizations are continuousM-functions.It is shown that the equations with one variable occurring in the nonlinear relaxation methods can always be solved by Newton's method combined with the Bisection method. The nonlinear relaxation methods are used to get an initial approximation in the domain of attraction of Newton's method. Numerical examples are given.  相似文献   

7.
We study the existence of (generalized) bounded solutions existing for all times for nonlinear parabolic equations with nonlinear boundary conditions on a domain that is bounded in space and unbounded in time (the entire real line). We give a counterexample which shows that a (weak) maximum principle does not hold in general for linear problems defined on the entire real line in time. We consider a boundedness condition at minus infinity to establish (one-sided) L-a priori estimates for solutions to linear boundary value problems and derive a weak maximum principle which is valid on the entire real line in time. We then take up the case of nonlinear problems with (possibly) nonlinear boundary conditions. By using comparison techniques, some (delicate) a priori estimates obtained herein, and nonlinear approximation methods, we prove the existence and, in some instances, positivity and uniqueness of strong full bounded solutions existing for all times.  相似文献   

8.
We present an analytical method for the computation of problems of incompressible boundary layer theory based on an application of the method of successive approximations. The system of equations is reduced to a form suitable for integration. Parameters characterizing the external flow and the body geometry are contained only in the coefficients of the system and do not enter into the boundary conditions. The transformed momentum equations are integrated across the boundary layer from a current value to infinity with the boundary conditions taken into account. If the integration is made from zero to infinity, then the equations pass over into the Kármán relations. Integrating the system of equations a second time, using the boundary conditions at the wall, we obtain a system of nonlinear integro-differential equations. To solve this system of equations we apply the method of successive approximations. To satisfy the boundary Conditions at infinity we introduce, at each step of the iterations, unknown “governing” functions. From the conditions at the outer side of the boundary layer we obtain additional equations for their determination. With the iterational algorithm formulated in this way, the boundary conditions, both on the body and at the outer side of the boundary layer; are satisfied automatically.We consider a locally self-similar approximation. In this case, relative to the “governing” functions, we obtain an algebraic system of equations. We write out the solution in the first approximation. The results obtained in the first approximation are compared with the results of finite-difference computations for a wide range of problems. The results obtained in this paper are compared with those obtained in [1] for the flow in the neighborhood of a stagnation point. An indication is given of the nonuniqueness of the solutions of the three-dimensional boundary layer equations.  相似文献   

9.
Initial‐boundary value problems for integrable nonlinear partial differential equations have become tractable in recent years due to the development of so‐called unified transform techniques. The main obstruction to applying these methods in practice is that calculation of the spectral transforms of the initial and boundary data requires knowledge of too many boundary conditions, more than are required to make the problem well‐posed. The elimination of the unknown boundary values is frequently addressed in the spectral domain via the so‐called global relation, and types of boundary conditions for which the global relation can be solved are called linearizable. For the defocusing nonlinear Schrödinger equation, the global relation is only known to be explicitly solvable in rather restrictive situations, namely homogeneous boundary conditions of Dirichlet, Neumann, and Robin (mixed) type. General nonhomogeneous boundary conditions are not known to be linearizable. In this paper, we propose an explicit approximation for the nonlinear Dirichlet‐to‐Neumann map supplied by the defocusing nonlinear Schrödinger equation and use it to provide approximate solutions of general nonhomogeneous boundary value problems for this equation posed as an initial‐boundary value problem on the half‐line. Our method sidesteps entirely the solution of the global relation. The accuracy of our method is proven in the semiclassical limit, and we provide explicit asymptotics for the solution in the interior of the quarter‐plane space‐time domain.  相似文献   

10.
This paper derives an explicit series approximation solution for the optimal exercise boundary of an American put option by means of a new analytical method for strongly nonlinear problems, namely the homotopy analysis method (HAM). The Black–Sholes equation subject to the moving boundary conditions for an American put option is transferred into an infinite number of linear sub-problems in a fixed domain through the deformation equations. Different from perturbation/asymptotic approximations, the HAM approximation can be applicable for options with much longer expiry. Accuracy tests are made in comparison with numerical solutions. It is found that the current approximation is as accurate as many numerical methods. Considering its explicit form of expression, it can bring great convenience to the market practitioners.  相似文献   

11.
The Adomian decomposition method and the asymptotic decomposition method give the near-field approximate solution and far-field approximate solution, respectively, for linear and nonlinear differential equations. The Padé approximants give solution continuation of series solutions, but the continuation is usually effective only on some finite domain, and it can not always give the asymptotic behavior as the independent variables approach infinity. We investigate the global approximate solution by matching the near-field approximation derived from the Adomian decomposition method with the far-field approximation derived from the asymptotic decomposition method for linear and nonlinear differential equations. For several examples we find that there exists an overlap between the near-field approximation and the far-field approximation, so we can match them to obtain a global approximate solution. For other nonlinear examples where the series solution from the Adomian decomposition method has a finite convergent domain, we can match the Padé approximant of the near-field approximation with the far-field approximation to obtain a global approximate solution representing the true, entire solution over an infinite domain.  相似文献   

12.
In this paper, we study the behavior of the solutions of nonlinear parabolic problems posed in a domain that degenerates into a line segment (thin domain) which has an oscillating boundary. We combine methods from linear homogenization theory for reticulated structures and from the theory on nonlinear dynamics of dissipative systems to obtain the limit problem for the elliptic and parabolic problems and analyze the convergence properties of the solutions and attractors of the evolutionary equations.  相似文献   

13.
Based on a new approximation method, namely pseudospectral method, a solution for the three order nonlinear ordinary differential laminar boundary layer Falkner–Skan equation has been obtained on the semi-infinite domain. The proposed approach is equipped by the orthogonal Hermite functions that have perfect properties to achieve this goal. This method solves the problem on the semi-infinite domain without truncating it to a finite domain and transforming domain of the problem to a finite domain. In addition, this method reduces solution of the problem to solution of a system of algebraic equations. We also present the comparison of this work with numerical results and show that the present method is applicable.  相似文献   

14.
We deal with the time-dependent Navier–Stokes equations (NSE) with Dirichlet boundary conditions on the whole domain or, on a part of the domain and open boundary conditions on the other part. It is shown numerically that combining the penalty-projection method with spatial discretization by the Marker And Cell scheme (MAC) yields reasonably good results for solving the above-mentioned problem. The scheme which has been introduced combines the backward difference formula of second-order (BDF2, namely Gear’s scheme) for the temporal approximation, the second-order Richardson extrapolation for the nonlinear term, and the penalty-projection to split the velocity and pressure unknowns. Similarly to the results obtained for other projection methods, we estimate the errors for the velocity and pressure in adequate norms via the energy method.  相似文献   

15.
We suggest a method for constructing grid schemes for initial-boundary value problems for many-dimensional nonlinear systems of first-order equations of hyperbolic type on the basis of the Galerkin-Petrov limit approximation to the mixed statement of an original problem. Our grid schemes are versions of the nonconformal finite-element method in which the approximate solution is constructed in the space of piecewise polynomial functions that admit discontinuities on the boundary of triangulation elements of the design domain.  相似文献   

16.
This work presents an approximation method for Navier-Stokes equations around a rotating obstacle. The detail of this method is that the exterior domain is truncated into a bounded domain and a new exterior domain by introducing a large ball. The approximation problem is composed of the nonlinear problem in the bounded domain and the linear problem in the new exterior domain. We derive the approximation error between the solutions of Navier-Stokes equations and the approximation problem.  相似文献   

17.
This paper presents a mathematical model of the human thermoregulatory system which has been developed to simulate the reaction of the human body to instantaneous changes in the temperature of the environment. The model combines two widely accepted approaches: the expression of heat flow within and from the human body in the form of partial differential equations, and the use of control theory. The closed-loop simulation is generated by introducing physical phenomena such as sweating, shivering, vasodilation and vasoconstriction, thus transforming the model equations into a system of nonlinear partial differential equations. The central difference operator is used to approximate spatial partial derivatives at a large number of mesh points, thus achieving high accuracy in the space dimension, and the problem is reduced to that of solving a nonlinear system of ordinary differential equations. A novel extrapolation algorithm, which copes well with the discontinuities between initial and boundary conditions caused by instantaneous environmental changes, is used to produce a high accuracy approximation in the time domain, and generate a solution to the problem. The model is used to simulate several important physical problems.  相似文献   

18.
This paper presents a new semi-analytic perturbation differential quadrature method for geometrically nonlinear vibration analysis of circular plates. The nonlinear governing equations are converted into a linear differential equation system by using Linstedt–Poincaré perturbation method. The solutions of nonlinear dynamic response and the nonlinear free vibration are then sought through the use of differential quadrature approximation in space domain and analytical series expansion in time domain. The present method is validated against analytical results using elliptic function in several examples for both clamped and simply supported circular plates, showing that it has excellent accuracy and convergence. Compared with numerical methods involving iterative time integration, the present method does not suffer from error accumulation and is able to give very accurate results over a long time interval.  相似文献   

19.
The paper is devoted to the analysis of the discontinuous Galerkin finite element method (DGFEM) applied to the space semidiscretization of a nonlinear nonstationary convection-diffusion problem with mixed Dirichlet-Neumann boundary conditions. General nonconforming meshes are used and the NIPG, IIPG and SIPG versions of the discretization of diffusion terms are considered. The main attention is paid to the impact of the Neumann boundary condition prescribed on a part of the boundary on the truncation error in the approximation of the nonlinear convective terms. The estimate of this error allows to analyse the error estimate of the method. The results obtained represent the completion and extension of the analysis from V. Dolej?í, M. Feistauer, Numer. Funct. Anal. Optim. 26 (2005), 349–383, where the truncation error in the approximation of the nonlinear convection terms was proved only in the case when the Dirichlet boundary condition on the whole boundary of the computational domain was considered.  相似文献   

20.
The Adomian decomposition method (ADM) can provide analytical approximation or approximated solution to a rather wide class of nonlinear (and stochastic) equations without linearization, perturbation, closure approximation, or discretization methods. In the present work, ADM is employed to solve the momentum and energy equations for laminar boundary layer flow over flat plate at zero incidences with neglecting the frictional heating. A trial and error strategy has been used to obtain the constant coefficient in the approximated solution. ADM provides an analytical solution in the form of an infinite power series. The effect of Adomian polynomial terms is considered and shows that the accuracy of results is increased with the increasing of Adomian polynomial terms. The velocity and thermal profiles on the boundary layer are calculated. Also the effect of the Prandtl number on the thermal boundary layer is obtained. Results show ADM can solve the nonlinear differential equations with negligible error compared to the exact solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号