首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the new brilliant neutron sources and the developments of novel optical elements, neutron spin echo (NSE) spectroscopy evolves to tackle new problems and scientific fields. The new developments pave the way to complex experimental set-ups such as the intensity modulated variant of NSE (IMNSE), a powerful technique which was introduced some 20 years ago but found limited use up to now. With the new compact supermirror or He3 polarizers IMNSE becomes attractive for a broad range of applications in magnetism, soft matter and biology. A novel development along this line is the polarimetric NSE technique, which combines IMNSE and the zero-field polarimeter Cryopad to access components of the scattered polarization that are transverse to the incoming polarization. Polarimetric NSE is the method of choice for studying chiral fluctuations, as illustrated by new results on the reference helimagnet MnSi.  相似文献   

2.
The project to upgrade the existing single-crystal diffractometer Heisses Einkristal Diffractometer (HEiDi) at FRM II with a polarised neutron option, enabling the investigation of magnetic ground states in single crystals has been ongoing since autumn 2004. After a detailed investigation of the possible options it has been decided to develop and rebuild the secondary spectrometer and keep the HEiDi monocromator. The new instrument has been named POLI-HEiDi as an abbreviation of Polarisation Investigator at HEiDi. Two different zero-field polarimeters will be made available for spherical neutron polarimetry, Cryoapad and MuPAD. Both, polarisation and analysis will be performed with polarised 3He spin filters. Several new and important components of the instrument have recently been commissioned. In this report we present these components and show how they fit with the design of the whole instrument.  相似文献   

3.
A new type of neutron resonance spin flipper (RSF) with high frequency oscillating magnetic field has been developed for Modulated IntEnsity by Zero Effort (MIEZE) spectrometer at cold neutron beam line MINE1 at JRR-3M reactor in JAEA. Dipole magnets enable us to provide the strong static fields for the RSFs. MIEZE signals have been demonstrated with the effective frequency of 600 kHz by using the new RSFs. The contrast of the signals was 0.58. The MIEZE spectrometer is under final process to practical use. The spectrometers can also be applied to the pulsed neutrons like J-PARC.  相似文献   

4.
We have discovered a new antiferromagnetic phase in TmNi2B2C by neutron diffraction. The ordering vector is Q(A) = (0.48,0,0) and the phase appears above a critical in-plane magnetic field of 0.9 T. The field was applied in order to test the assumption that the zero-field magnetic structure at Q(F) = (0.094,0.094,0) would change into a c-axis ferromagnet if superconductivity were destroyed. We present theoretical calculations which show that two effects are important: a suppression of the ferromagnetic component of the RKKY exchange interaction in the superconducting phase and a reduction of the superconducting condensation energy due to the periodic modulation of the moments at Q(A).  相似文献   

5.
S. Sponar  G. Badurek 《Physics letters. A》2008,372(18):3153-3156
We present a neutron polarimetric experiment where two kinds of spinor precessions are observed: one is induced by different total energy of neutrons (zero-field precession) and the other is induced by a stationary guide field (Larmor precession). A characteristic of the former is the dependence of the energy-difference, which is in practice tuned by the frequency of the interacting oscillating magnetic field ωR. In contrast the latter completely depends on the strength of the guide field, namely Larmor frequency ωL. Our neutron-polarimetric experiment exhibits individual tuning as well as specific properties of each spinor precession, which assures the use of both spin precessions for multi-entangled spinor manipulation.  相似文献   

6.
We describe here a method of performing adiabatic fast passage (AFP) spin flipping of polarized 3He used as a neutron spin filter (NSF) to polarize neutron beams. By reversing the spin states of the 3He nuclei the polarization of a neutron beam can be efficiently reversed allowing for the transmission of a neutron beam polarized in either spin state. Using an amplitude modulated frequency sweep lasting 500 ms we can spin flip a polarized 3He neutron spin filter with only 1.8×10−5 loss in 3He polarization. The small magnetic fields (10-15 G) used to house neutron spin filters mean the 3He resonant frequencies are low enough to be generated using a computer with a digital I/O card. The versatility of this systems allows AFP to be performed on any beamline or in any laboratory using 3He neutron spin filters and polarization losses can be minimised by adjusting sweep parameters.  相似文献   

7.
At the NIST Center for Neutron Research (NCNR), we have applied 3He neutron spin filters (NSFs) to the instruments where 3He NSFs are advantageous, such as thermal triple-axis spectrometry, small-angle neutron scattering, and diffuse reflectometry. We present the status of our development and application of this method, including polarized gas production by spin-exchange optical pumping, magnetostatic cavities for storage of the polarized gas on the beam line, and nuclear magnetic resonance (NMR)-based, on-line monitoring and reversal of the 3He polarization. We present the status of developing user-friendly interfaces incorporated into the instrument software to handle these 3He neutron spin filters while taking data and performing data analysis. Finally we discuss the status of development of a polarization capability on the multi-axis crystal spectrometer, which requires polarization analysis over a 220° angular range.  相似文献   

8.
We have begun the development of an in-situ spin-exchange optical pumping (SEOP) system aiming to use it as a neutron spin filter for incident beam polarization at the Japan Proton Accelerator Research Complex (J-PARC). To use it, it is recommended that the optics be adjusted easily, have high stability, and have a small size. In this paper we improved our previous SEOP system aiming to use it in J-PARC and performed a neutron beam test at the JRR-3 NOP beamline to see the performance of the neutron spin filter (NSF). The polarization of the 3He gas reached 73%. This paper gives the present status of the development of in-situ SEOP system in J-PARC.  相似文献   

9.
Small-angle neutron scattering technique using polarized neutrons is powerful for studying structures in the range between nm and μm of magnetic materials. In addition, they have been used for the incident beam of focusing-geometry SANS instruments using a magnetic neutron lens, where a high polarization degree of about 99.9% is necessary because the imperfectness of the neutron polarization increases the background level. We are going to install such a magnetic focusing system on the new time-of-flight SANS (TOF-SANS) instrument at the J-PARC so as to make qmin smaller than 10−3 Å−1 and improve the resolution of the conventional TOF-SANS at low q. As a polarizing device of the instrument, two V-shaped polarizing super mirrors arranged in crossed geometry to enhance the polarization degree has been considered. In this paper, we present the concept and the detailed design of this device and its performance estimated by Monte Carlo simulations.  相似文献   

10.
We present an imaging technique utilizing a neutron spin interferometer. Neutron spin phase contrast is achieved in spatial resolved measurements of the phase difference between two superposed neutron spin states introduced by passing through a magnetic sample. Since the phase difference of spin states parallel and anti-parallel to the magnetic field is proportional to the magnetic field integral, it is possible to record images of the internal magnetic field distribution of the sample. Taking advantage of high transmission probabilities, neutron spin phase contrast provides non-destructive images of internal magnetic structures.  相似文献   

11.
We discuss the development and characterisation of a new in situ spin exchange optical pumping (SEOP) based 3He neutron spin filter polarisation device. We present results from a recent test of the prototype system developed with the Institut Laue-Langevin. The polariser was installed on the polarised reflectometer CRISP at ISIS in the analyser position. The 3He was pumped continuously in situ on the beamline. The system also integrated a 3He adiabatic fast passage spin flipper that allowed reversal of the 3He and therefore neutron polarisation state, allowing for measurement of all four polarisation cross-sections. The system was run for a number of days reaching a 3He polarisation of 63%.  相似文献   

12.
The polarization of the recoil neutrons from the reaction γp→π+n was measured at a c.m. angle of 105° for incident photon energies between 675 and 1125 MeV. A scattered π+ meson and a recoil neutron were detected in coincidence with a magnetic spectrometer and a neutron polarimeter system using liquid hydrogen. Results are compared with recent phenomenological analyses and the other existing data measured by the double polarization measurement technique.  相似文献   

13.
We argue that the resonant peak observed in neutron scattering experiments on superconducting cuprates and the peak/dip/hump features observed in ARPES measurements are byproducts of the same physical phenomenon: both are due to feedback effects on the damping of spin fluctuations in a d-wave superconductor. We argue that in the superconducting phase, the dynamical spin susceptibility possesses the resonance peak at Ωres∝ξ−1 where ξ is the magnetic correlation length. The scattering of the resonant magnetic excitations by electrons gives rise to a peak/dip/hump behavior of the electronic spectral function, the peak-dip separation is exactly Ωres.  相似文献   

14.
A near-backscattering (n-BS) crystal-analyzer neutron inelastic spectrometer, DIANA, has been proposed for construction at Japan Proton Accelerator Research Complex. It has originally been designed to view a decoupled non-poisoned moderator in order to obtain high intensity and good energy resolution. Recently, we have reconsidered the instrumental parameters including the type of moderator, by performing Monte-Carlo simulations in order to obtain better performance. Among four virtual n-BS spectrometers on different beam sources moderators, a coupled-moderator-source spectrometer has shown the best performance, i.e. compared to the original DIADA design between ninefold and fivefold enhanced intensities have been obtained with 21%-better to 35%-worse energy resolutions.  相似文献   

15.
We have studied the spin polarized hot neutron matter in the presence of strong magnetic field. In this work, using the lowest order constrained variational method at finite temperature and employing AV18AV18 nuclear potential, some thermodynamic properties of spin polarized neutron matter such as spin polarization parameter, free energy, equation of state and effective mass have been calculated. It has been shown that the strong magnetic field breaks the symmetry of the free energy, leading to a magnetized equilibrium state. We have found that the equation of state becomes stiffer by increasing both magnetic field and temperature. The magnetic field dependence of effective mass for the spin-up and spin-down neutrons has been investigated.  相似文献   

16.
We have investigated the low energy nuclear spin excitations in NdMn2Si2 and NdMn2Ge2 by high resolution inelastic neutron scattering. Previous neutron diffraction investigations gave ambiguous results about Nd magnetic ordering at low temperatures. The present element-specific technique gave direct evidence for the magnetic ordering of Nd ions. We found considerable difference in the process of the Nd magnetic ordering at low temperature in NdMn2Si2 and NdMn2Ge2. Our results are consistent with those of magnetization and recent neutron diffraction measurements.  相似文献   

17.
18.
It is shown that a ferromagnetic “minimum energy relaxed state” is accessible to a neutron fluid. We model the neutron fluid as a spin quantum plasma where the electromagnetic interaction is trough the magnetic moment of the neutron. The neutron ferromagnetism results from the macroscopic spin alignment that occurs due to a profound interplay between the classical and spin quantum vorticities carried by the charge-less neutron fluid. The simplest manifestation of a neutron superfluidity comes about by an exact cancellation of the quantum and classical vorticities to create a helicity free system.  相似文献   

19.
We have studied magnetic structure and properties of Ga-substituted Pb-hexaferrites having the stoichiometry of PbFe12−xGaxO19 with x=6 (i.e., Fe:Ga=1:1). According to the neutron diffraction results, this compound is characterized by a collinear spin structure below its Curie temperature (∼325 K). Analysis of the neutron diffraction patterns further indicates that the magnetic-moment direction of Fe3+ ions located at the octahedral 2a sublattice is downward while that of the unsubstituted PbFe12O19 is upward at room temperature. With decreasing temperature, the Fe3+ magnetic moment at the octahedral 2a sublattice undergoes a reorientation to the upward direction while that of the unsubstituted PbFe12O19 remains upward down to 5 K. This selective local spin reversal at the 2a sublattice of PbFe6Ga6O19 was attributed to the weakening of the superexchange interaction between the octahedral 2a site and the tetrahedral 4fIV site upon the preferential substitution of Ga ions for Fe ions at these two neighboring sites. Comparison of the neutron diffraction results with dc magnetization responses and ac susceptibilities further indicates that the paramagnetic–ferrimagnetic transition at ∼325 K (Tc) is followed by the local spin reversal at lower temperatures.  相似文献   

20.
Nowadays, nanoparticles of maghemite (γ-Fe2O3) represent one of the most useful materials in modern advanced nanotechnological applications due to their superior magnetic properties. For their characterization,57Fe zero-field and in-field Mössbauer spectroscopy have proved themselves to be very powerful and effective tools which are crucial for an investigation of the local surrounding of iron atoms and observation of dynamic effects. The structural and magnetic characteristics of maghemite and its nanoparticles are thus discussed with regard to their zero-field and in-field Mössbauer spectra recorded at various temperatures and applied external magnetic fields. In addition, a special attention is also devoted to remarkable physical phenomena (superparamagnetism, spin canting) occurring largely in maghemite nanosized particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号