首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study of the thermal decomposition of intimate mixtures of sodium chlorate and chromium(III) oxide in different molar ratios was made employing thermogravimetry, differential thermal analysis, chemical analysis, infrared spectroscopy and X-ray diffraction analysis. Sodium chlorate in the presence of chromium(III) oxide starts to decompose around 180°, which is much below the decomposition temperature of pure NaClO3. Each mole of Cr2O3 consumes 8/3 moles of NaClO3, undergoing oxidation to sodium dichromate.  相似文献   

2.
The influence of lithium oxide-doping on the thermal stability of Co3O4 was studied using DTA, TG, DTG and X-ray diffraction techniques. Pure and doped cobaltic oxide specimens were prepared by thermal decomposition of pure basic cobalt carbonate and the basic carbonate mixed with different proportions of LiOH, in air, at different temperatures between 500 and 1100°C.Pure Co3O4 was found to start partial decomposition when heated in air at 830°C yielding the CoO phase. The complete decomposition was effected by heating at 1000°C.Doping of Co3O4 with different proportions of Li2O was found to much increase its thermal stability. The temperatures at which the doped oxide samples started to undergo decomposition were increased to 865, 910 and 1050°C for 0.375, 0.75 and 3% Li2O-doped solids, respectively. The DTA revealed that the 1.5% Li2O-doped cobaltic oxide did not undergo any thermal decomposition till 1080°C. The X-ray investigation showed that the prolonged heating of 1.5 and 3% Li2O-doped solids at 1100°C for 36 h effected only a partial decomposition of Co3O4 into CoO. Heating of these solids at temperatures varying between 900 and 1100°C led also to the formation of a new lithium oxide cobaltic oxide phase, the composition of which has not yet been identified.The role of Li2O in increasing the thermal stability of Co3O4 was attributed to the substitution of some of its cobalt ions by Li+ ions, according to Verwey and De Boer's mechanism, leading to the transformation of some of the Co2+ into Co3+ ions thus increasing the oxidation state of the cobaltic oxide lattice.  相似文献   

3.
Thermal analysis of magnesium tris(maleato) ferrate(III) dodecahydrate has been studied from ambient to 700°C in static air atmosphere employing TG, DTG, DTA, XRD, Mössbauer and infrared spectroscopic techniques. The precursor decomposes to iron(II) intermediate species along with magnesium maleate at 248°C. The iron(II) species then undergo oxidative decomposition to give α-Fe2O3 at 400°C. At higher temperatures magnesium maleate decomposes directly to magnesium oxide, MgO, which undergoes a solid state reaction with α-Fe2O3 to yield magnesium ferrite (MgFe2O4) at 600°C, a temperature much lower than for ceramic method. The results have been compared with those of the oxalate precursor.  相似文献   

4.
The thermal decomposition of sodium azide has been studied in the temperature range 240–360°C in vacuum and under pressure of an inert gas, argon. The results show that the decomposition is partial 360°C. From the observations made in the present work, namely: (i) the decomposition is incomplete both under vacuum and inert gas; (ii) mass spectrometric studies do not reveal any decrease in the intensity of the background species, CO+2, CO+, H2O+, and (iii) sodium metal remains in the ‘free state’ as seen by the formation of a metallic mirror at temperatures above 300°C, it has been argued that the partial nature of decompostion is due to the confinement of the decomposition to intermosaic regions within the lattice.  相似文献   

5.
The solid-state reactions in the system Cu—Sb—O were investigated by thermogravimetry and X-ray diffraction. Equimolar mixtures of CuO and Sb2O3 form Cu(II)Sb2O6 when slowly heated in air up to 1000°C. The firt step in this reaction is the oxidation of Sb2O3 to Sb2O4 at 380–500°C, followed by further oxidation of Sb2O4 and the formation of CuSb2O6 at 500–1000°C. Thermal decomposition of CuSb2O6 in a flowing nitrogen atmosphere occurs in three stages; the first, with an activation energy of 356 kJ mole?1, results in the formation of a new copper(I) antimony oxide, with a composition of Cu4SbO4.5, as determined by atomic absorption analysis and X-ray fluoresecence. Confirmation of predominantly monovalent copper and pentavalent antimony in the new compound was by ESR and ESCA, respectively. Two forms of Cu4SbO4.5 have been distinguished; one of these (form II) has a structure of lower symmetry, and decomposes when heated in air at 600°C to a mixture of CuO and another new copper antimony oxide, as yet uncharacterized. On further heating to 1100°C in air, Cu4SbO4.5 (form I) gradually reforms. Details of these reactions are summarized and X-ray powder data presented for Cu4SbO4.5.  相似文献   

6.
The CO adsorption species on Co3O4 and (0.5-15%)CoO/CeO2 catalysts have been investigated by temperature-programmed desorption and IR spectroscopy. At 20°C, the largest amount of CO is adsorbed on the 5%CoO/CeO2 sample to form, on Com2+On2+ clusters, hydrogen-containing, bidentate, and monodentate carbonate complexes, whose decomposition is accompanied by CO2 desorption at 300 and 450°C (1.1 × 1020 g–1). The formation of the carbonates is accompanied by the formation of Co+ cations and Co0, on which carbonyls form. The latter decompose at 20, 90, and 170°C to release CO (2.7 × 1019 g–1). Part of the carbonyls oxidizes to CO2 upon oxygen adsorption, and the CO2 undergoes desorption at 20°C. Adsorbed oxygen decreases the decomposition temperature of the H-containing and bidentate carbonates from 300 to 100-170°C and maintains the sample in the oxidized state, which is active in subsequent CO adsorption and oxidation. CO oxidation by oxygen of the catalyst diminishes the activity of the sample in these processes and increases the decomposition temperature of the carbonate complexes. Taking into account the properties of the adsorption complexes, we concluded that the H-containing and bidentate carbonates are involved in CO oxidation by oxygen of the catalyst at ~170°C under isothermal conditions. The rate limiting step is the decomposition of the carbonates, a process whose activation energy is 65-74 kJ/mol.  相似文献   

7.
The present study deals with preparation and characterization of spinel mixed oxide systems NiM 2 III O4, where MIII?=?FeIII, CrIII. In order to obtain 50% NiFe2O4/50% SiO2 and 50% NiCr2O4/50% SiO2 nanocomposite, we have used a versatile route based on the thermal decomposition inside the SiO2 matrix, of some particular precursors, coordination compounds of the involved MII and MIII cations with dicarboxylate ligands. The ligands form in the redox reaction between metal nitrates mixture and 1,3-propanediol at the heating around 140?°C of the gels (tetraethylorthosilicate?Cmetal nitrates?C1,3-propanediol?Cwater). The as-obtained precursors, embedded in silica gels, have been characterized by FT-IR spectrometry and thermal analysis. Both precursors thermally decompose up to 350?°C leading to the formation of the corresponding metal oxides inside the silica matrix. X-ray diffraction of the annealed powders have evidenced the formation of NiFe2O4 starting with 600?°C, and NiCr2O4 starting with 400?°C. This behavior can be explained by the fact that, by thermal decomposition of the Fe(III) carboxylate at 300?°C, the spinelic phase ??-Fe2O3 is formed, which interacts with the NiO, forming the ferrite nuclei. By thermal decomposition of chromium carboxylate, a nonstoichiometric chromium oxide (Cr2O3+x ) is formed. In the range 380?C400?°C, Cr2O3+x turns into Cr2O3 which immediately interacts with NiO leading to the formation of nickel chromites nuclei inside the pores of silica matrix. Both spinels have been obtained as nanocrystalites homogenously dispersed as resulted from XRD and TEM data.  相似文献   

8.
This paper presents a study regarding the obtaining of NiCr2O4 by two new unconventional synthesis methods: (i) the first method is based on the formation of Cr(III) and Ni(II) carboxylate-type precursors in the redox reaction between the nitrate ion and 1,3-propanediol. The thermal decomposition of these complex combinations, at ~300 °C, leads to an oxide mixture of Cr2O3+x and NiO, with advanced homogeneity, small particles and high reactivity. On heating this mixture at 500 °C, Cr2O3 reacts with NiO to form NiCr2O4, which was evidenced by FT-IR and X-ray diffractometry (XRD) analysis; (ii) the second method starts from a mechanical mixture of (NH4)2Cr2O7 and Ni(NO3)2·6H2O. On heating this mixture, a violent decomposition at 240 °C with formation of an oxides mixture (Cr2O3 + CrO3) and NiO takes place. On thermal treatment up to 500 °C, an intermediary phase NiCrO4 is formed, which by decomposition at ~700 °C leads to NiCr2O4, evidenced by FT-IR and XRD analysis. NiCr2O4 is formed, in both cases, starting with a temperature higher than 400 °C, when the non-stoichiometric chromium oxide (Cr2O3+x ) loses the oxygen excess and turns to stoichiometric chromium oxide (Cr2O3), which further reacts with NiO.  相似文献   

9.
The chemical compatibility of perovskite-type Ba0.5Sr0.5Co0.8Fe0.2O3?δ (BSCF) oxides with Cr2O3 has been examined between room temperature and 1,100 °C. Differential thermal analysis and thermogravimetric analysis were used to analyze the thermal behavior of BSCF–Cr2O3 binary mixtures in all composition ranges (0–100 mass% BSCF). The reaction products were identified by X-ray analysis after heating at 700–1,100 °C. As we expected, it was found that perovskite-type BSCF oxide had a poor chemical compatibility with the Cr2O3 oxide. In particular, the decomposition process of the BSCF–Cr2O3 binary mixture is quite complex and it starts at about 700–750 °C. The mixtures of BSCF and Cr2O3 oxides reacted forming mixed complex oxides based on (Ba/Sr)FeO3, (Co/Fe)CrO4, and (Ba/Sr)CrO4 mixtures.  相似文献   

10.
The effects of γ-irradiation (0.2–1.6 MGy), thermal treatment and doping with MoO3 and V2O5 (0.25–4 mol%) on the surface and catalytic properties of manganese oxides prepared by thermal decomposition of manganese carbonate at 400°C and 600°C have been investigated. The techniques employed were X-ray diffraction, nitrogen adsorption at −196°C, oxidation of CO by O2 at 120–220°C and decomposition of H2O2 at 20–50°C. The results revealed that γ-irradiation decreased the particle size of manganese oxides, increased their specific surface areas, decreased the amount of surface excess oxygen and decreased their catalytic activities. The doping with MoO3 and V2O5 conducted at 600°C brought about a measurable decrease in the BET-surface area and catalytic activities of the treated solids. These results were discussed in terms of splitting of manganese oxide particles and removal of chemisorbed oxygen by treating with γ-irradiation and formation of manganese molybdate and vanadates by treating with the used dopant oxides.  相似文献   

11.
Reduced graphene oxide/metal ferrite (rGO/MFe2O4, M = Cu, Co, Ni) nanohybrids are successfully prepared through a simple, one-step hydrothermal method. The rGO/MFe2O4 hybrids are characterized by XRD, TEM. The rGO/MFe2O4 nanohybrids demonstrate amazing catalytic activity on thermal decomposition of ammonium perchlorate (AP) based propellants. DSC results indicate that the high-temperature decomposition (HTD) temperature of propellants added with rGO/MFe2O4 nanohybrids (3 wt%), could decrease from 325.9 °C to 259.9 °C, 268.8 °C, 271.9 °C, 306.9 °C, respectively. The HTD activation energy on a conversion degree (α) range from 0.05 to 0.95 of propellant samples were investigated by two model-free methods Flynne–Walle–Ozawa (FWO) and Kissinger–Akahira–Sunose (KAS). The results showed that both methods had similar values of Ea, and they match well with each other. A strong dependence of Ea on α revealed a complex decomposition process. The model-fitting analysis suggested the HTD process of propellant samples with or without catalysts both followed Mampel (First order) reaction model.  相似文献   

12.
The thermal decomposition of ammonium metavanadate supported on aluminium oxide was investigated using DTA, TG and X-ray diffraction techniques.The results obtained revealed that ammonium vanadate decomposed at 225–250°C giving an intermediate compound ((NH4)2V6O16) which decomposed readily at 335–360°C producing V2O5. Alumina was found to chance the formation of the intermediate compound and retard its decomposition. Some of the V5+ ions of V2O5 lattice seemed to be reduced into V4+ and V3+ ions by heating in air at 450°C in the presence of Al2O3. Such a reaction was attributed to dissolution of some Al3+ ions in the V2O5 lattice via location in interstitial positions and/or in cationic vacancies. Al2O3 was found to interact with V2O5 at 650° C giving well-crystalline A1VO4 which decomposed at about 750°C forming well-crystalline δ-Al2O3 and V2O5,. Pure Al2O3, heated in air at 1000°C, existed in the form of the κ-phase which, on mixing with V2O5 (0.5 V2O5:1 Al2O3) and heating in air at 1000°C, was converted entirely to the well-crystalline α-Al2O3 phase.  相似文献   

13.
CuCr2O4 spinel powders were synthesized starting from different chromium sources, namely (i) chromium oxide (α-Cr2O3) and (ii) ammonium dichromate ((NH4)2Cr2O7). The copper source was a Cu(II) carboxylate-type complex. The Cu(II) carboxylate complex was obtained by the redox reaction between Cu(NO3)2·3H2O and 1,3-propanediol (1,3PG) at 130 °C. In the first case (i), we have started from a mixture of α-Cr2O3, Cu(NO3)2·3H2O and 1,3PG that upon heating formed the copper malonate complex, which decomposed around 220 °C forming an oxide mixture (CuO + α-Cr2O3). In the second case (ii), (NH4)2Cr2O7, Cu(NO3)2·3H2O and 1,3PG were homogenously mixed. Heating this mixture at 130 °C resulted, in situ, in the Cu(II) complex. On controlled temperature increase, the violent decomposition of (NH4)2Cr2O7 took place at 180 °C along with the decomposition of the Cu(II) complex, leading to an amorphous oxide mixture of Cr2O3+x and CuO. By annealing the samples in the temperature range 400–1000 °C, the spinel phase (CuCr2O4) was obtained in both cases: (i) at 800 °C and (ii) at 600 °C as a result of the interactions between the precursors used, when the oxide system was amorphous and highly reactive. The presence of CuCr2O4 was highlighted by XRD and FTIR analyses.  相似文献   

14.
A tin dioxide–sodium stannate composite has been obtained by the thermal treatment of sodium peroxostannate nanoparticles at 500°C in air. X-ray powder diffraction study has revealed that the composite includes crystalline phases of cassiterite SnO2, sodium stannate Na2Sn2O5, and sodium hexahydroxostannate Na2Sn(OH)6. Scanning electron microscopy has shown that material morphology does not change considerably as compared with the initial tin peroxo compound. Electrochemical characteristics have been compared for the anodes of lithium-ion batteries based on tin dioxide–sodium stannate composite and anodes based on a material manufactured by the thermal treatment of graphene oxide–tin dioxide–sodium stannate composite at 500°C in air.  相似文献   

15.
《Mendeleev Communications》2022,32(5):697-699
Magnesium citrate, obtained by dissolving magnesium oxide in an aqueous solution of citric acid, turned out to be a decahydrate of the composition Mg3(C6H5O7)2·10H2O, which was established by the results of synchronous thermal analysis, X-ray diffraction and IR spectroscopy. It is shown that the thermal decomposition of this salt proceeds in three stages in the temperature ranges of 120–250, 250–370 and 370–550 °C to form nanocrystalline magnesium oxide with grain sizes from 7 to 23 nm.  相似文献   

16.
The stability of spinel-type mixed Mn1.5Ga1.5O4 oxide prepared in an inert medium (1000 °C, Ar) is studied by thermogravimetry and high-temperature X-ray diffraction in air in a wide temperature range 30–1000 °C. On heating, reversible decomposition processes of initial spinel are observed. From 30 °C to 600 °C oxygen atoms attach to the surface layer of initial Mn1.5Ga1.5O4 spinel to form a new phase distinct from parent oxide by the oxygen stoichiometry (cation vacancies are formed). The product of decomposition is two oxides: Mn1.5Ga1.5O4 and Mn1.5–xGa1.5–x[·]xO4. On the contrary, above 600 °C a loss of oxygen occurs, the concentration of cation vacancies decreases in Mn1.5–xGa1.5–x[·]xO4, and the reverse process of single phase oxide crystallization takes place. At 1000 °C the spinel phase forms again whose composition is similar to that of the initial parent phase Mn1.5Ga1.5O4. On cooling the decomposition of this phase is again observed due to oxygen attachment.  相似文献   

17.
The kinetics of ethane oxidation was studied at 320, 340, 353 and 380°C, mixture composition 2 C2H6 + 1 O2, and total pressure 609 torr. It was found that at 320°C CH2O and CH3CHO were branching agents. A series of experiments was conducted on 2C2H6 + O2 oxidation in the presence of 0.7% 14C-labeled ethylene. The ethylene oxide was found to form only from C2H4, formaldehyde formed from C2H4 and C2H6; and CH3CHO, C2H5OH, and CH3OH formed only from ethane. The formation rates of C2H4, C2H4O, and CH2O were calculated by the kinetic tracer method. At 320°C the fraction of oxygen-containing products formed from C2H4 was 16–18%, and at 353 and 380°C it was 30–40%.  相似文献   

18.
The conductance of NaClO4 at (25–45)°C in methanol-H2O, and glycerol-H2O mixtures in a concentration range up to 10?2 M has been measured. The association constant, KA, values have been determined, where the conductometric data were analysed by a M S X computer using the Fuoss-Aprano method. The KA values for NaClO4 in methanol-H2O are higher than in glycerel-H2O mixtures, Also KA values increase as the proportional of methanol or glycerol increases in mixture. The thermodynamic parameters ΔH°, ΔG°, and ΔS° were also calculated. It is obvious that the entire process of the ionic association in those systems are endothermic ones. The Walden products, Λoη were calculated for all systems investigated.  相似文献   

19.
It has been found that cobalt(II, III) oxide, Co3O4, lowers the thermal decomposition temperature of Na2S2O8 and K2S2O8 by about 25°C by catalysis, and it therefore acts as a P-type semiconductor at high temperature and atmospheric (air) pressure. Also, this oxide reacts at high temperature with sodium or potassium pyrosulfates to form thermally stable sodium cobalt disulfate, Na2Co(SO4)2 and potassium cobalt trisulfate, K2Co2(SO4)3, respectively. Binary systems, consisting of a 1 : 3 mole ratio (oxide : persulfate), are established as representing the solid state stoichiometric reaction. X-Ray diffractometry is employed to identify intermediate and final reaction products in general. All calculations are based on data obtained from TG, DTG and DTA curves.  相似文献   

20.
Thermal decomposition of Ln2(C2O4)3 · 9H2O concentrate (Ln = La, Ce, Pr, Nd) in the presence of CaC2O4 · H2O was studied by X-ray diffraction, thermogravimetry, and chemical analysis. Annealing at temperatures above 374°C in the absence of calcium oxalate gives rise to the solid solution of CeO2-based rare-earth oxides. Calcite CaCO3 is formed in the presence of calcium oxalate at annealing temperatures above 442°C, which impedes the formation of lanthanide oxide solid solution and favors crystallization of oxides as individual La2O3, CeO2, Pr6O11, and Nd2O3 phases. An increase in temperature above 736°C is accompanied by decomposition of calcium carbonate to give rise to an individual CaO phase and an individual phase of CeO2-based lanthanide oxide solid solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号