首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 94 毫秒
1.
Liquid-phase reduction NO 3 using monometallic and bimetallic catalysts (5% Rh/Al2O3, 5% Rh-0.5% Cu/Al2O3, 5% Rh-1.5% Cu/Al2O3, 5% Rh-5% Cu/Al2O3 and a physical mixture of 5% Rh/Al2O3 and 1.5% Cu/Al2O3) was studied in a slurry reactor operating at atmospheric pressure. Kinetic measurements were performed for a low concentration of nitrate (0.4 × 10−3−3.2 × 10−3 mol dm−3) and the temperature range 293–313 K. From the experimental data, it was found that the reduction of nitrate is first order with respect to nitrate. On the basis of the rate constants, the apparent activation energy was established using a graphic method. Published in Russian in Kinetika i Kataliz, 2007, Vol. 48, No. 6, pp. 881–886. This article was submitted by the authors in English.  相似文献   

2.
Solubility data in the diagonal sections of the quaternary reciprocal 2KCl + Ca(NO3)2 → 2KNO3 + CaCl2–H2O system at 25 and 15°C are presented. It has been shown that the quaternary system has no stable diagonal at the studied temperatures, but contains a stable pair of salts, namely, potassium nitrate and calcium chloride. The obtained data can be used to optimize the thermal and concentrational parameters of the synthesis of potassium nitrate from calcium nitrate and potassium chloride.  相似文献   

3.
In this work the synthesis of CoFe2O4-SiO2 and NiFe2O4-SiO2 nanocomposites was studied via the sol–gel method, using the polymerized complex route. The polymerized precursors obtained by the reaction of citric acid, ethylene glycol, tetraethylorthosilicate, ferric nitrate, and cobalt nitrate or nickel chloride were characterized by nuclear magnetic resonance (NMR) and infrared (IR) spectroscopy. NMR and IR spectra of the precursors, without and with metallic ions, show the formation of polymeric chains with ester and ether groups and complexes of metal-polymeric precursor. The nanocomposites were obtained by the thermal decomposition of the organic fraction and characterized by X-ray diffraction (XRD) and vibrating sample magnetometry (VSM). XRD patterns show the formation of CoFe2O4 and NiFe2O4 in an amorphous silica matrix above 400 °C in both cases. When the calcination temperature was 800 °C the particle size of the crystalline phases, calculated using the Scherrer equation, reached ∼35 nm for the two oxides. VSM plots show the ferrimagnetic behavior that is expected for this type of magnetic material; the magnetization at 12.5 KOe of the CoFe2O4-SiO2 and NiFe2O4-SiO2 compounds was 29.5 and 17.4 emu/g, respectively, for samples treated at 800 °C.  相似文献   

4.
Macro-/mesoporous Al2O3 supports were prepared by using monodisperse polystyrene (PS) microspheres as a template. The pore volume and BET surface area of the Al2O3 supports increased considerably with increasing amounts of the PS microspheres; further investigation showed that PS template only increased the volume of macro-pores but did not change the volume of meso-pores or micro-pores. Macro-/mesoporous Re2O7/Al2O3 metathesis catalysts were prepared through loading Re2O7 onto the as-prepared macro-/mesoporous Al2O3 supports, and their catalytic performance was tested in a fixed-bed tubular reactor using the metathesis of normal butylenes as a probe reaction. The results showed that the prepared macro-/mesoporous Re2O7/Al2O3 catalyst had high activity with consistent selectivity; propylene and pentene accounted for more than 90 wt% of the metathesis products, while the amount of ethylene plus hexane was less than 10 wt%, the majority of which was hexane. These Re2O7/Al2O3 catalysts had not only higher activity, but also longer working life span and higher tolerance to carbon residues than conventional Re2O7/Al2O3 catalysts.  相似文献   

5.
The influence of the alumina support on the catalytic activity of Pt/Al2O3 catalysts in aqueous phase reforming of ethylene glycol to hydrogen was studied. The catalysts were prepared by impregnation of γ-, δ-, and α-alumina with H2PtCl6. The highest rate of hydrogen production (452 μmol min−1 g−1) obtained with the Pt/α-Al2O3 catalyst can be related to the highest extent of dispersion of Pt on α-Al2O3. XPS, TEM-EDX and TPR-H2 measurements showed the absence of chloride-containing surface complexes in the Pt/α-Al2O3 catalyst. However, chloride-containing entities were found on the surface of Pt/γ-Al2O3 and Pr/δ-Al2O3 catalysts. When chloride ions are removed chlorinated Pt species facilitate the sintering of Pt crystallites and in this way affect the extent of Pt dispersion. Moreover, depending upon the particular crystalline form, alumina atoms have different coordination and alumina surfaces contain varying amounts of OH groups of different nature which affect the interaction between Pt and the support.  相似文献   

6.
Electrolytes of 1 M blend salts (LiPF6 and tetraethylammonium tetrafluoroborate, Et4NBF4) have been investigated in supercapacitor battery system with composite LiMn2O4 and activated carbon (AC) cathode, and Li4Ti5O12 anode. The results obtained with the blend salts electrolytes are compared with those obtained with cells build using standard 1 M LiPF6 dissolved in ethylene carbonate + dimethyl carbonate + ethyl (methyl) carbonate (EC + DMC + EMC, 1:1:1 wt.%) as electrolyte. It is found that the blend salts electrolyte performs better on both electrochemical and galvanostatic cycling stability, especially cycled at 4 C rate. When the concentration of LiPF6 is 0.2 M and Et4NBF4 is 0.8 M, the capacity retention of the battery is 96.23% at 4 C rate after 5,000 cycles, much higher than that of the battery with standard 1 M LiPF6 electrolyte, which is only 62.35%. These results demonstrate that the blend salts electrolyte can improve the galvanostatic cycling stability of the supercapacity battery. Electrolyte of 0.2 M LiPF6 + 0.8 M Et4NBF4 in EC + DMC + EMC (1:1:1 wt.%) is a promising electrolyte for (LiMn2O4 + AC)/Li4Ti5O12.  相似文献   

7.
The gas-phase monooxidation of ethylene by hydrogen peroxide on a biomimetic heterogeneous catalyst (per-FTPhPFe3+OH/Al2O3) was studied under comparatively mild conditions. The biomimetic oxidation of ethylene with hydrogen peroxide was shown to be coherently synchronized with the decomposition of H2O2. Depending on reaction medium conditions, one of two desired products was formed, either ethanol or acetaldehyde. The kinetics and probable mechanism of ethylene transformation were studied.  相似文献   

8.
Er3+-doped Al2O3 nanopowders have been prepared by the non-aqueous sol-gel method using the aluminum isopropoxide as precursor, acetylacetone as a chelating agent, nitric acid as a catalyzer, and hydrated erbium nitrate as a dopant under isopropanol environment. The different phase structure, including three crystalline types of (Al, Er)2O3 phases, α, γ, θ, and an Er–Al–O stoichiometric compound phase, Al10Er6O24, was observed for the 0.01–0.5 mol% Er3+-doped Al2O3 nanopowders at the sintering temperature of 1,000 °C. The green and red up-conversion emissions centered at about 523, 545 and 660 nm, corresponding respectively to the 2H11/2, 4S3/24I15/2 and 4F9/24I15/2 transitions of Er3+, were detected by a 978 nm semiconductor laser diodes excitation. With increasing Er3+ doping concentration from 0.01 to 0.1 mol%, the intensity of the green and red emissions increased with a decrease of the intensity ratio of the green to red emission. When the Er3+ doping concentration rose to 5 mol%, the intensity of the green and red emissions decreased with an increase of their intensity ratio. The maximum intensity of both the green and red emissions with the minimum of intensity ratio was obtained, respectively, for the 0.1 mol% Er3+-doped Al2O3 nanopowders composed of a single α-(Al,Er)2O3 phase. The intensity ratio of the green emission at 523 and 545 nm increased monotonously for all Er3+ doping concentrations. The two-photon absorption up-conversion process was involved in the green and red up-conversion emissions of the Er3+-doped Al2O3 nanopowders.  相似文献   

9.
A series of Pd/Al2O3–ZrO2 catalysts were prepared to be used in methane oxidation. The effect of the addition order of metal alkoxides on the texture, structure and catalytic properties of the solids is studied. The control of the preparation parameters is achieved via sol gel way as an attractive route of the preparation of these catalysts. N2 physisorption, XRD, Scanning Electronic Microscopy (SEM) and H2 chemisorption are the main techniques used to characterize the prepared Pd/Al2O3–ZrO2 catalysts. Textural analysis reveals the mesoporosity of all the catalysts independently of the addition order of alkoxides while surface area is more pronounced when the aluminium alkoxide is added before or with the zirconium precursor. XRD patterns show the development of the zirconia tetragonal phase for all the catalysts. Better metallic dispersion is obtained when aluminium alkoxide is added first which can be justified by the high homogeneity observed on the corresponding catalyst as revealed by SEM technique.  相似文献   

10.
Mn-, LaMn- and LaCaMn-citrates were synthesized at 60–120°C in ethylene glycol medium using chlorides or nitrates as metal sources. Their composition, IR spectra and thermal decomposition were studied. Equimolar La/Mn ratio has been established in the complex, prepared from chloride solution with the same initial composition of the metals. In the isolated three-metallic complex the molar ratio of the metals deviates from the composition in the initial solution. The final products of the heating of Mn- and mixed-metal LaMn-citrates at 1000°C are phase-homogeneous Mn3O4 (hausmannite) and LaMnO3 respectively. Parasitic phase(s) are observed in LaxCa1−xMnyO3, produced from LaCaMn-citrate.  相似文献   

11.
Trimetallic NiMoW/Al2O3 catalyst was prepared using mixed H4SiMo3W9O40 heteropoly acid of Keggin structure and nickel citrate. Bimetallic NiMo/Al2O3 and NiW/Al2O3 catalysts based on H4SiMo12O40 and H4SiW12O40, respectively, were synthesized as reference samples. The use of mixed H4SiMo3W9O40 heteropoly acid as an oxide precursor allows the tungsten sulfidation degree and the degree of promotion of active phase particles to be increased. The hydrodesulfurization activity is enhanced as compared to NiW/Al2O3 catalyst. The synergistic enhancement of the activity of the NiMo3W9/Al2O3 catalyst relative to the bimetallic analogs is probably caused by formation of new mixed promoted active sites for direct desulfurization.  相似文献   

12.
Samples of a precursor for an aluminum oxide ceramics reinforced with zirconium oxide were synthesized by hydrolysis of various aluminum salts in the presence of a ZrO2 sol under conditions of urea decomposition at 90°C and pH < 4 maintained, with hydrolysis products deposited onto the surface of ZrO2 sol particles. It was found that the nature of a salt anion affects the interaction of hydrolysis products of the aluminum cation with the surface of ZrO2 sol particles. The structure of products formed in thermal treatment of samples of a precursor for Al2O3-ZrO2 (T = 1250°C) was characterized by X-ray phase analysis and scanning electron microscopy. The phase transition temperatures of the oxides Al2O3 and ZrO2 contained in the precursor were estimated using the results of thermal analysis of the samples in the temperature range 20–1300°C.  相似文献   

13.
Nano-structured spinel Li2Mn4O9 powder was prepared via a combustion method with hydrated lithium acetate (LiAc·2H2O), manganese acetate (MnAc2·4H2O), and oxalic acid (C2H2O4·2H2O) as raw materials, followed by calcination of the precursor at 300 °C. The sample was characterized by X-ray diffraction, scanning electron microscope, and energy-dispersive X-ray spectroscopy techniques. Electrochemical performance of the nano-Li2Mn4O9 material was studied using cyclic voltammetry, ac impedance, and galvanostatic charge/discharge methods in 2 mol L−1 LiNO3 aqueous electrolyte. The results indicated that the nano-Li2Mn4O9 material exhibited excellent electrochemical performance in terms of specific capacity, cycle life, and charge/discharge stability, as evidenced by the charge/discharge results. For example, specific capacitance of the single Li2Mn4O9 electrode reached 407 F g−1 at the scan rates of 5 mV s−1. The capacitor, which is composed of activated carbon negative electrode and Li2Mn4O9 positive electrode, also exhibits an excellent cycling performance in potential range of 0–1.6 V and keeps over 98% of the maximum capacitance even after 4,000 cycles.  相似文献   

14.
In this work we report the performance of permeation barriers based on organic/inorganic multilayer stacks. We have used PMMA-SiO2 (poly methyl methacrylate-silica) hybrid films synthesized through a sol–gel route as organic–inorganic components, whereas Al2O3 thin films were used as the inorganic component. The hybrid layers were deposited by dip coating and the Al2O3 by atomic layer deposition (ALD), films were prepared on polyethylene naphthalene (PEN) substrates. The permeability of the films and stacks is evaluated using helium as the diffusion gas in a custom made ultra-high vacuum system. The results show that permeability for PEN is reduced from 5 × 10−3 g/m2-day to about 9 × 10−5 g/m2-day for the best multiple barrier evaluated. Increased barrier properties are due to the increasing in the path and hence the lag-time of the permeating gas. In particular, we report the surface roughness of the different layers and its impact on the barrier performance. The hybrid layers reduced notably the roughness of the bare PEN substrate improving the quality of the Al2O3 layer in the barrier. The optical transmittance of the barriers in the visible region is higher than 80% in all the studied cases.  相似文献   

15.
The A1, O, AlO, A12O, Al2O2, WO2, and WO3, partial pressures in the vapor over Al2O3 in a tungsten Knudsen effusion cell between 2300 and 2600 K were derived from A1+, O+, AlO+, A12O+, Al2O2+, WO2+, and WO3+, ion intensities. The mass spectrometer was calibrated against the equilibrium constant of the WO3(g) = WO2(g) + O(g) reaction. Refined values of the ionization cross sections of AlO and A12O2 were used in the partial pressure calculations. The enthalpies of atomization of aluminum suboxides were determined to be Δat H o(AlO, g, 0) = 510.7 ± 3.3 kJ mol−1, Δat H o(Al2O, g, 0) = 1067.2 ± 6.9 kJ mol−1, and Δat H o(Al2O2, g, 0) = 1556.7 ± 9.9 kJ mol−1.  相似文献   

16.
Interactions in the Al2TiO5-Ti2O3 system were studied and the regions of existence of Al2?2xTi 2x 3+ Ti4+O5 solid solutions with a pseudobrookite structure were determined.  相似文献   

17.
KGd(WO4)2 (KGW) particles were synthesized at 3.5, 5.5 and 7.5 pH values by Pechini polymeric complex sol–gel method using potassium nitrate, gadolinium nitrate, ammonium paratungstate, citric acid and ethylene glycol as starting materials. Deionized water was used as solvent. Polymeric precursor gel was formed with citric acid as complexing agent and ethylene glycol as binder. Synthesized gel was analyzed by FT-IR spectroscopy. Prepared precursor gels were further annealed using resistive and microwave processes at 550 and 700 °C, respectively. The properties of heat treated samples were characterized by powder XRD, FT-IR, Raman and SEM analysis to understand the crystallinity, organic liberation, tungstate ribbon formation and surface morphology, respectively. The phase formation and different phases of intermediate oxides in pre-fired samples were investigated by powder XRD. Organic liberation in the samples in relation to temperature, and the carbon content in the pre-fired powder was analyzed using FT-IR spectrum. Raman spectrum reveals the formation of tungsten ribbons as well as the quality of the samples. The morphological changes at different synthesis conditions were observed with SEM micrographs.  相似文献   

18.
The xerogel V2O5/C composite was synthesized by a sol-gel method, using the suspension of carbon black in the solution of crystalline V2O5 in hydrogen peroxide as the precursor solution. The Li+ intercalation/deintercalation reactions of the xerogel V2O5/C composite, used as an anode material of a two-electrode cell with an aqueous LiNO3 solution as the electrolyte, was studied before and after the addition of vinylene carbonate (VC). Upon addition of vinylene carbonate in an amount of only l wt %, the coulombic capacity during galvanostatic cycling, instead of commonly observed permanent fade, displayed an initial increase and then a stable plateau.  相似文献   

19.
Cerium dioxide as a component of CuO-ZnO-CeO2/Al2O3/cordierite catalysts stabilizes their action in the decomposition of methanol by preventing carbon deposition on the surface and facilitating hydrogen formation with selectivity and yield in the range 85–96%. The optimal indices for this reaction are obtained for a CeO2-CuO/Al2O3/cordierite sample prepared using an ammonium precursor for cerium, (NH4)2Ce(NO3)6. This catalyst displays enhanced reductive capacity relative to the analogous CeO2-CuO composition prepared using Ce(NO3)3·6H2O.  相似文献   

20.
The Li(Ni0.33Co0.33Mn0.33)O2 (LNCMO) cathode material is prepared by poly(vinyl pyrrolidone) (PVP)-assisted sol-gel/hydrothermal and poly(ethylene glycol)-block-poly(propylene glycol)-block-poly (ethylene glycol) (Pluronic-P123)-assisted hydrothermal methods. The compound prepared by PVP-assisted hydrothermal method shows a comparatively higher electrical conductivity of ~2?×?10?5 S cm?1 and exhibits a discharge capacity of 152 mAh g?1 in the voltage range of 2.5 to 4.4 V, for a C-rate of 0.2 C, whereas the compounds prepared by P123-assisted hydrothermal method and PVP-assisted sol-gel method show a total electrical conductivity in the order of 10?6 S cm?1 and result in poor electrochemical performance. The structural and electrical properties of LNCMO (active material) and its electrochemical performance are correlated. The difference in percentage of ionic and electronic conductivity contribution to the total electrical conductivity is compared by transference number studies. The cation disorder is found to be the limiting factor for the lithium ion diffusion as determined from ionic conductivity values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号