首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The coordinated ethylene molecule in the dicationic complex [(PNP)Pt(CH2=CH2)](BF4)2 (PNP = 2,6-bis(diphenylphosphinomethyl)pyridine) undergoes nucleophilic attack by free internal alkenes, giving the isolable complexes [(PNP)Pt(CH2=CHCH(Me)CMeRR'](BF4)2 (R, R' = H, Me) and providing a new effective pathway for a chemo- and regio-selective catalytic hydrovinylation reaction.  相似文献   

2.
Xia A  Sharp PR 《Inorganic chemistry》2001,40(16):4016-4021
Reaction of 1,2-dimethylhydrazine with the platinum hydroxo complex [(dppp)Pt(mu-OH)](2)(BF(4))(2) gives the bridging 1,2-dimethylhydrazido(-2) product [(dppp)(2)Pt(2)(mu-eta(2):eta(2)-MeNNMe)](BF(4))(2) 1. Crystals of 1.CH(2)Cl(2) from CH(2)Cl(2)/Et(2)O are monoclinic (C/2) with a = 19.690(1), b = 18.886(1), c = 17.170 (1) A, and beta = 92.111(1) degrees. Treatment of [(dppp)Pt(mu-OH)](2)(OTf)(2) with 1,1-dimethylhydrazine gives [(dppp)(2)Pt(2)(mu-OH)(mu-NHNMe(2))](OTf)(2) 2. Crystals of 2.CH(2)Cl(2) from CH(2)Cl(2)/Et(2)O are triclinic (P-1) with a = 12.910 (3), b = 13.927(3), c = 17.5872 (3) A, alpha = 87.121(3), beta = 89.997(4), and gamma = 84.728(3) degrees. Reaction of [(dppp)Pt(mu-OH)](2)(OTf)(2) with 1 equiv of phenylhydrazine in CH(2)Cl(2) gives [(dppp)(2)Pt(2)(mu-OH)(mu-NHNHPh)](OTf)(2) 3. Two equivalents of phenylhydrazine with [(dppp)Pt(mu-OH)](2)(X)(2) gives [(dppp)Pt(mu-NHNHPh)](2)(X)(2) 4 (X = BF(4), OTf). Crystals of 3.ClCH(2)CH(2)Cl from ClCH(2)CH(2)Cl/(i)()Pr(2)O are monoclinic (P2(1)/n) with a = 20.990(2), b = 13.098(1), c = 25.773 (2) A, and beta = 112.944(2) degrees. Crystals of 4(X = BF(4)).ClCH(2)CH(2)Cl(.)()2((t)()BuOMe) from ClCH(2)CH(2)Cl/(t)()BuOMe are monoclinic (C2/m) with a = 30.508(1), b = 15.203(1), c = 19.049 (1) A, and beta = 118.505(2) degrees.  相似文献   

3.
Condensation of Ph(2)PH and paraformaldehyde with 2-amino-7-methyl-1,8-naphthyridine gave the new flexible tridentate ligand 2-[N-(diphenylphosphino)methyl]amino-7-methyl-1,8-naphthyridine (L). Reaction of L with [Cu(CH(3)CN)(4)]BF(4) and/or different ancillary ligands in dichloromethane afforded N,P chelating or bridging luminescent complexes [(L)(2)Cu(2)](BF(4))(2), [(micro-L)(2)Cu(2)(PPh(3))(2)](BF(4))(2) and [(L)Cu(CNN)]BF(4) (CNN = 6-phenyl-2,2'-bipyridine), respectively. Complexes [(L)(2)Pt]Cl(2), [(L)(2)Pt](ClO(4))(2) and [(L)Pt(CNC)]Cl (CNC = 2,6-biphenylpyridine) were obtained from the reactions of Pt(SMe(2))(2)Cl(2) or (CNC)Pt(DMSO)Cl with L. The crystal structures and photophysical properties of the complexes are presented.  相似文献   

4.
The protonation of the phosphinito-bridged Pt(I) complex [(PHCy(2))Pt(μ-PCy(2)){κ(2)P,O-μ-P(O)Cy(2)}Pt(PHCy(2))](Pt-Pt) (1) by aqueous HBF(4) or hydrofluoric acid leads selectively to the hydrido-bridged solvento species syn-[(PHCy(2))(H(2)O)Pt(μ-PCy(2))(μ-H)Pt(PHCy(2)){κP-P(OH)Cy(2)}](Y)(2)(Pt-Pt) ([2-H(2)O]Y(2)) {Y = BF(4), F(HF)(n)} when an excess of acid was used. On standing in halogenated solvents, complex [2-H(2)O](BF(4))(2) undergoes a slow but complete isomerization to [(PHCy(2))(2)Pt(μ-PCy(2))(μ-H)Pt{κP-P(OH)Cy(2)}(H(2)O)](BF(4))(2)(Pt-Pt) ([4-H(2)O][BF(4)](2)) having the P(OH)Cy(2) ligand trans to the hydride. The water molecule coordinated to platinum in [2-H(2)O][BF(4)](2) is readily replaced by halides, nitriles, and triphenylphosphane, and the acetonitrile complex [2-CH(3)CN][BF(4)](2) was characterized by XRD analysis. Solvento species other than aqua complexes, such as [2-acetone-d(6)](2+) or [2-CD(2)Cl(2)](2+) were obtained in solution by the reaction of excess etherate HBF(4) with 1 in the relevant solvent. The complex [2-H(2)O](Y)(2) [Y = F(HF)(n)] spontaneously isomerizes into the terminal hydrido complexes [(PHCy(2))Pt(μ-PCy(2)){κ(2)P,O-μ-P(O)Cy(2)}Pt(H)(PHCy(2))](Y)(Pt-Pt) ([6](Y)). In the presence of HF, complex [6](Y) transforms into the bis-phosphanido-bridged Pt(II) dinuclear complex [(PHCy(2))(H)Pt(μ-PCy(2))(2)Pt{κP-P(OH)Cy(2)}](Y)(Pt-Pt) ([7](Y)). When the reaction of 1 with HF was carried out with diluted hydrofluoric acid by allowing the HF to slowly diffuse into the dichloromethane solution, the main product was the linear 60e tetranuclear complex [(PHCy(2)){κP-P(O)Cy(2)}Pt(1)(μ-PCy(2))(μ-H)Pt(2)(μ-PCy(2))](2)(Pt(1)-Pt(2)) (8). Insoluble compound 8 is readily protonated by HBF(4) in dichloromethane, forming the more soluble species [(PHCy(2)){κP-P(OH)Cy(2)}Pt(1)(μ-PCy(2))(μ-H)Pt(2)(μ-PCy(2))](2)(BF(4))(2)(Pt(1)-Pt(2)) {[9][BF(4)](2)}. XRD analysis of [9][BF(4)](2)·2CH(2)Cl(2) shows that [9](2+) is comprised of four coplanar Pt atoms held together by four phosphanido and two hydrido bridges. Both XRD and NMR analyses indicate alternate intermetal distances with peripheral Pt-Pt bonds and a longer central Pt···Pt separation. DFT calculations allow tracing of the mechanistic pathways for the protonation of 1 by HBF(4) and HF and evaluation of their energetic aspects. Our results indicate that in both cases the protonation occurs through an initial proton transfer from the acid to the phosphinito oxygen, which then shuttles the incoming proton to the Pt-Pt bond. The different evolution of the reaction with HF, leading also to [6](Y) or 8, has been explained in terms of the peculiar behavior of the F(HF)(n)(-) anions and their strong basicity for n = 0 or 1.  相似文献   

5.
Reaction of unsaturated (44e (-) skeleton) [PdPt 2(mu-PPh 2) 2(mu-P 2Ph 4)(R F) 4] 4 with Br (-) produces the saturated (48e (-) skeleton) complex [NBu 4][(R F) 2Pt(mu-PPh 2)(mu-Br)Pd(mu-PPh 2)(mu-P 2Ph 4)Pt(R F) 2] 5 without any M-M' bond. Attempts to eliminate Br (-) of 5 with Ag (+) in CH 2Cl 2 as a solvent gives a mixture of [(R F) 2Pt (III)(mu-PPh 2) 2Pt (III)(R F) 2] and some other unidentified products as a consequence of oxidation and partial fragmentation. However, when the reaction of 5 with Ag (+) is carried out in CH 3CN, no oxidation is observed but the elimination of Br (-) and the formation of [(R F) 2(CH 3CN)Pt(mu-PPh 2)Pd(mu-PPh 2)(mu-P 2Ph 4)Pt(R F) 2] 6 (46e (-) skeleton), a complex with a Pt-Pd bond, takes place. It is noteworthy that the reaction of 5 with TlPF 6 in CH 2Cl 2 does not precipitate TlBr but forms the adduct [(R F) 2PtTl(mu-PPh 2)(mu-Br)Pd(mu-PPh 2)(mu-P 2Ph 4)Pt(R F) 2] 7 with a Pt-Tl bond. Likewise, 5 reacts with [AgOClO 3(PPh 3)] in CH 2Cl 2 forming the adduct [AgPdPt 2(mu-Br)(mu-PPh 2) 2(mu-Ph 2P-PPh 2)(R F) 4(PPh 3)] 8, which contains a Pt-Ag bond. Both adducts are unstable in a CH 3CN solution, precipitating TlBr or AgBr and yielding the unsaturated 6. The treatment of [NBu 4] 2[(R F) 2Pt(mu-PPh 2) 2Pd(mu-PPh 2) 2Pt(R F) 2] in CH 3CN with I 2 (1:1 molar ratio) at 233 K yields a mixture of 4 and 6, which after recrystallization from CH 2Cl 2 is totally converted in 4. If the reaction with I 2 is carried out at room temperature, a mixture of the isomers [NBu 4][(R F) 2Pt(mu-PPh 2)(mu-I)Pd(mu-PPh 2)(mu-P 2Ph 4)Pt(R F) 2] 9 and [NBu 4][(R F)(PPh 2R F)Pt(mu-PPh 2)(mu-I)Pd(mu-PPh 2) 2Pt(R F) 2] 10 are obtained. The structures of the complexes have been established on the bases of NMR data, and the X-ray structures of 5- 8 have been studied. The relationship between the different complexes has been studied.  相似文献   

6.
The stable primary phosphine complexes trans-M(PH(2)Mes)(2)Cl(2) (1, M = Pd; 2, M = Pt; Mes = 2,4,6-(t-Bu)(3)C(6)H(2)) were prepared from Pd(PhCN)(2)Cl(2) and K(2)PtCl(4), respectively. Reaction of Pt(COD)Cl(2) (COD = 1,5-cyclooctadiene) with less bulky arylphosphines gives the unstable cis-Pt(PH(2)Ar)(2)Cl(2) (3, Ar = Is = 2,4,6-(i-Pr)(3)C(6)H(2); 4, Ar = Mes = 2,4,6-Me(3)C(6)H(2)). Spontaneous dehydrochlorination of 4 or direct reaction of K(2)PtCl(4) with 2 equiv of PH(2)Mes gives the insoluble primary phosphido-bridged dimer [Pt(PH(2)Mes)(&mgr;-PHMes)Cl](2) (5), which was characterized spectroscopically, including solid-state (31)P NMR studies. The reversible reaction of 5 with PH(2)Mes gives [Pt(PH(2)Mes)(2)(&mgr;-PHMes)](2)[Cl](2) (6), while PEt(3) yields [Pt(PEt(3))(2)(&mgr;-PHMes)](2)[Cl](2) (7), which on recrystallization forms [Pt(PEt(3))(&mgr;-PHMes)Cl](2) (8). Complex 5 and PPh(3) afford [Pt(PPh(3))(&mgr;-PHMes)Cl](2) (9). Addition of 1,2-bis(diphenylphosphino)ethane (dppe) to 5 gives the dicationic [Pt(dppe)(&mgr;-PHMes)](2)[Cl](2) (10-Cl), which was also obtained as the tetrafluoroborate salt 10-BF(4)() by deprotonation of [Pt(dppe)(PH(2)Mes)Cl][BF(4)] (11) with Et(3)N or by reaction of [Pt(dppe)(&mgr;-OH)](2)[BF(4)](2) with 2 equiv of PH(2)Mes. Complexes 8, 9, and 10-Cl.2CH(2)Cl(2).2H(2)O were characterized crystallographically.  相似文献   

7.
Yi CS  Yun SY 《Organic letters》2005,7(11):2181-2183
[reaction: see text]. The cationic ruthenium complex [(PCy3)2(CO)(Cl)Ru=CHCH=C(CH3)2]+BF4- was found to be an effective catalyst for the coupling reaction of aniline and ethylene to form a approximately 1:1 ratio of N-ethylaniline and 2-methylquinoline products. The analogous reaction with 1,3-dienes resulted in the preferential formation of Markovnikov addition products. The normal isotope effect of k(NH)/k(ND) = 2.2 (aniline and aniline-d7 at 80 degrees C) and the Hammett rho = -0.43 (correlation of para-substituted p-X-C6H4NH2) suggest an N-H bond activation rate-limiting step for the catalytic reaction.  相似文献   

8.
The reaction of [[O(SiMe2Ap)2)2LnLi(thf)n] 1 (Ln = Nd, n= 2) and 2 (Ln = La, n = 3) in hexane with [(dme)NiCl2] (dme = dimethoxyethane) and [(cod)PtCl2] (cod = 1,5-cyclooctadiene) leads to the dimeric Ni complex [[O(SiMe2Ap)2]2Ni2] (3) and the mononuclear platinum compound [O(SiMe2Ap)2Pt] (4). respectively (O(SiMe2ApH)2 = bis(4-methyl-2-pyridylamino)tetramethyldisiloxane). Compounds 3 and 4 have been characterized by X-ray crystal structure analysis. The ligand-transfer reactions probably proceed via heterobimetallic intermediates. A model complex of such an intermediate [[O(SiMe2Ap)2)2NdPdMe] (7) was isolated by reacting 1 with [(cod)PdMeCl]. Applications of complex 3 in ethylene oligomerization were investigated. Highly branched oligomers with a very narrow molecular weight distribution (Mn =230 gmol(-1) (relative to polystyrene standards), Mw/M= 1.14) are produced when Et3Al2Cl3 is employed as a co-catalyst and CH2Cl2 as the solvent (TOF = 122000 h(-1). Treatment of one equivalent of 1 or 2 with two equivalents of [(cod)CuCl] results in the formation of the polycyclic tetranuclear complex [[O(SiMe2Ap)2]2Cu4] (8). An X-ray crystal structure analysis of 8 shows channels formed by a series of fourteen-membered rings in the solid state.  相似文献   

9.
The broad applicability of the title reaction is established through studies of neutral and charged, coordinatively saturated and unsaturated, octahedral and square planar rhenium, platinum, rhodium, and tungsten complexes with cyclopentadienyl, phosphine, and thioether ligands which contain terminal olefins. Grubbs' catalyst, [Ru(=CHPh)(PCy3)2(Cl)2], is used at 2-9 mol% levels (0.0095-0.00042 M, CH2-Cl2). Key data are as follows: [(eta5-C5H4(CH2)6CH=CH2)Re(NO)(PPh3)-(CH3)], intermolecular metathesis (95 %); [(eta5-C5H5)Re(NO)(PPh3)(E(CH2CH=CH2)2)]+ TfO (E=S, PMe, PPh), formation of five-membered heterocycles (96-64%; crystal structure E = PMe); [(eta5-C5Me5)Re(NO)(PPh((CH2)6CH=CH2)2)(L)]n+ nBF4-(L/n = CO/1, Cl/0), intramolecular macrocyclization (94-89%; crystal structure L= Cl); fac-[(CO)3Re(Br)(PPh2(CH2)6CH=CH2)2] and cis-[(Cl)2Pt(PPh2(CH2)6CH=CH2)2], intramolecular macrocyclizations (80-71%; crystal structures of each and a hydrogenation product); cis-[(Cl)2Pt(S(R)(CH2)6CH= CH2)2], intra-/intermolecular macrocyclization (R=Et, 55%/24%; tBu, 72%/ <4%); trans-[(Cl)(L)M(PPh2(CH2)6CH=CH2)2] (M/L = Rh/CO, Pt/C6F5) intramolecular macrocyclization (90-83%; crystal structure of hydrogenation product, M=Pt); fac-[W(CO)3(PPh((CH2)6CH=CH2)2)3], intramolecular trimacrocyclization (83 %) to a complex mixture of triphosphine, diphosphine/ monophosphine, and tris(monophosphine) complexes, from which two isomers of the first type are crystallized. The macrocycle conformations, and basis for the high yields, are analyzed.  相似文献   

10.
Pentanuclear linear chain Pt(II,III) complexes [[Pt2(NH3)2X2((CH3)3CCONH)2(CH2COCH3)]2[PtX'4]].nCH3COCH3 (X = X' = Cl, n = 2 (1a), X = Cl, X' = Br, n = 1 (1b), X = Br, X' = Cl, n = 2 (1c), X = X' = Br, n = 1 (1d)) composed of a monomeric Pt(II) complex sandwiched by two amidate-bridged Pt dimers were synthesized from the reaction of the acetonyl dinuclear Pt(III) complexes having equatorial halide ligands [Pt2(NH3)2X2((CH3)3CCONH)2(CH2COCH3)]X' ' (X = Cl (2a), Br (2b), X' ' = NO3-, CH3C6H4SO3-, BF4-, PF6-, ClO4-), with K2[PtX'4] (X' = Cl, Br). The X-ray structures of 1a-1d show that the complexes have metal-metal bonded linear Pt5 structures, and the oxidation state of the metals is approximately Pt(III)-Pt(III)...Pt(II)...Pt(III)-Pt(III). The Pt...Pt interactions between the dimer units and the monomer are due to the induced Pt(II)-Pt(IV) polarization of the Pt(III) dimeric unit caused by the electron withdrawal of the equatorial halide ligands. The density functional theory calculation clearly shows that the Pt...Pt interactions between the dimers and the monomer are made by the electron transfer from the monomer to the dimers. The pentanuclear complexes have flexible Pt backbones with the Pt chain adopting either arch or sigmoid structures depending on the crystal packing.  相似文献   

11.
Five salts, [(C(4)H(9)N(4))Pt(II)(CNCH(3))(2)](BPh(4)).CH(3)OH, [(C(4)H(9)N(4))Pt(II)(CNCH(3))(2)](PF(6)).CH(2)Cl(2), [(C(4)H(9)N(4))Pt(II)(CNCH(3))(2)]Cl.4H(2)O, [(C(4)H(9)N(4))Pt(II)(CNCH(3))(2)]Br.3.5H(2)O, and [(C(4)H(9)N(4))Pt(II)(CNCH(3))(2)]Cl.0.1H(2)O, have been crystallized and examined by single crystal X-ray diffraction. While the internal structure of the cation is similar in all salts, the interactions between cations vary in the different salts. Yellow [(C(4)H(9)N(4))Pt(II)(CNCH(3))(2)](BPh(4)).CH(3)OH and red [(C(4)H(9)N(4))Pt(II)(CNCH(3))(2)](PF(6)) form face-to-face dimers with Pt...Pt separations of 3.6617(6) and 3.340(2) A, respectively. In the latter, hydrogen bonding of the chelating ligand to adjacent anions facilitates the close approach of pairs of cations. The salts [(C(4)H(9)N(4))Pt(II)(CNCH(3))(2)]Cl.4H(2)O, [(C(4)H(9)N(4))Pt(II)(CNCH(3))(2)]Br.3.5H(2)O, and [(C(4)H(9)N(4))Pt(II)(CNCH(3))(2)]Cl.0.1H(2)O form columnar structures with Pt...Pt separations that range from 3.2514(5) to 3.5643(6) A. The water molecules and anions surround these columns and form bridges between neighboring columns. The electronic spectra of aqueous solutions of [(C(4)H(9)N(4))Pt(II)(CNCH(3))(2)]Cl.4H(2)O show spectral changes upon increasing concentrations of the platinum complex that are indicative of the formation of a dimer in solution with an equilibrium constant for dimerization of 23(1).  相似文献   

12.
The 14-electron ruthenium phosphonium alkylidene complex [(IH2Mes)Cl2Ru=CH(PCy3)][B(C6F5)4], 1b, a highly active olefin metathesis catalyst, reacts with stoichiometric quantities of ethylene at -50 degrees C in CD2Cl2 to generate the ruthenacyclobutane complex [(IH2Mes)Cl2RuCH2CH2CH2], 2, and [CH2=CH(PCy3)][B(C6F5)4] in quantitative yield by NMR spectroscopy. 1H and 13C NMR spectroscopies on 2 and 2-13C3 are consistent with a symmetrical C2v structure, providing the first experimental information concerning this crucial intermediate in ruthenium-mediated olefin metathesis. At -50 degrees C, exchange with free ethylene takes place on the chemical time scale. Complex 2 decomposes in solution upon warming to room temperature, generating propene and unknown ruthenium product(s).  相似文献   

13.
The cationic ruthenium-hydride complex [(PCy3)2(CO)(CH3CN)2RuH]+BF4- (1) was found to be an effective catalyst for the regioselective coupling reaction of benzocyclic amines and terminal alkynes to form the tricyclic quinoline derivatives. The scope of the reaction was explored by using the catalytic system Ru3(CO)12/NH4PF6. The catalytically active cationic ruthenium-acetylide complex [(PCy3)2(CO)(CH3CN)2RuCCPh]+BF4- was isolated from the reaction of 1 with phenylacetylene.  相似文献   

14.
Acid-catalysed hydrolysis of [CH2[(Sn(Ph2)CH2Si(OiPr)Me2]2] followed by subsequent reaction with mercuric chloride in acetone afforded the novel silicon- and tin-containing eight-membered ring [cyclo-CH2[Sn(Cl2)CH2Si(Me2)]2O] in good yield, the crystal structure of which is reported. 119Sn NMR and X-ray studies indicate that [cyclo-CH2[Sn(Cl2)CH2Si(Me2)]2O] acts as a bidentate Lewis acid towards chloride ions exclusively forming the 1:1 complex [(Ph3P)2N]+[cyclo-CH2[Sn(Cl2)CH2Si(Me2)]2OCl]- upon addition of [(Ph3P)2N]+Cl- . Also reported are the synthesis and structure of [K(dibenzo[18]crown-6)]+[cyclo-CH2(Sn(Cl2)CH2Si(Me2)]2OF]-, the first completely characterised organostannate with a C2SnCl2F- substituent pattern. No ring-opening polymerisation could be achieved for [cyclo-CH2[Sn(Cl2)CH2Si(Me2)]2O] or for its perphenylated derivative [cyclo-CH2[Sn(Ph2)CH2Si(Me2)]2O]. The reaction of [cyclo-CH2[Sn(Cl2)CH2Si(Me2)]2O] with Me3O+BF4- gave the tin-containing fluorosilane [CH2[Sn(Cl2)CH2Si(F)Me2]2], in which the Si-F bond is activated by intermolecular Si-F...Sn interactions in the solid state.  相似文献   

15.
The N-heterocyclic carbene (NHC) precursor, 1-methyl-3-(2-pyridinylmethyl)-1H-imidazolium tetrafluoroborate, [HCH3im(CH2py)]BF4, reacted with AgBF4 in the presence of aqueous NaOH to produce the silver complex [Ag(CH3im(CH2py))2]BF4 (1) which was then reacted with Au(tht)Cl to form the corresponding gold(I) complex, [Au(CH3im(CH2py))2]BF4 (2). Complex 2 reacted with 1 equiv of AgBF4 to produce the mixed-metal species [AuAg(CH3im(CH2py))2](BF4)2 (3). The reaction of 2 with 1 equiv of Au(tht)Cl followed by metathesis with NaBF4 produces the dimetallic gold complex [Au2(CH3im(CH2py))2](BF4)2 (4). The reaction of [Ag(CH3im(CH2py))2]BF4 (1) with 1 equiv of AgBF4 produces the trinuclear [Ag3(CH3im(CH2py))3(NCCH3)2](BF4)3 (5) complex, which appears to dissociate into a dimetallic complex in solution. Complexes 1-5 were characterized by 1H NMR, 13C NMR, UV-vis, luminescence spectroscopy, elemental analysis, mass spectrometry, and X-ray crystallography. The CH3im(CH2py) ligands in 3 are arranged in a head-to-head fashion spanning a Au-Ag separation of 3.0318(5) A with the carbene portion of the ligand remaining coordinated to the Au(I) center. In 4, the ligands are arranged in a head-to-tail fashion with an Au-Au separation of 3.1730(5) A. In 5, the ligands bridge the nearly symmetrical Ag3 triangular core with short Ag-Ag separations of 2.7765(8), 2.7832(8), and 2.7598(8) A. All of these complexes, including the ligand precursor, are intensely luminescent in solution and the solid state.  相似文献   

16.
Reaction of the electron-rich, bulky tridentate PNN ligand (PNN=2-di-tert-butylphosphinomethyl-6-diethylaminomethylpyridine) with Ru(PPh3)3Cl2 at 65 degrees C resulted in formation of the mononuclear dinitrogen complex (PNN)Ru(Cl)2N2 (minor) and the N2 bridged Ru(II) dinuclear complex [(PNN)Ru(Cl)2]2(micro-N2) (major). These complexes can be interconverted; passing argon through a solution of the mixture resulted in formation of pure . The cationic square-pyramidal [(PNN)Ru(PPh3)Cl]OTf was obtained by the reaction of complex with silver triflate followed by PPh3. Reaction of complex with CO yielded (PNN)Ru(CO)Cl2, which upon reaction with one equiv. of AgBF4 gave the cationic [(PNN)Ru(CO)Cl]BF4. The dicationic [(PNN)Ru(CO)(H2O)(acetone)](BF4)2 was obtained from with 2 equiv. of AgBF4 in acetone solution. Complexes , and were structurally characterized by X-ray crystallography. Complexes and upon addition of an equivalent of base, catalyzed the dehydrogenation of secondary alcohols to the corresponding ketones and primary alcohols to esters in good yields and high selectivity accompanied with the evolution of hydrogen gas.  相似文献   

17.
Abstraction of the chloride ligand from the PCN-based chloromethylrhodium complex 2 by AgX (X=BF(4)(-), CF(3)SO(3)(-)) or a direct C-C cleavage reaction of the PCN ligand 1 with [(coe)(2)Rh(solv)(n)](+)X(-) (coe=cyclooctene) lead to the formation of the coordinatively unsaturated rhodium(III) complexes 3. Compound 3 a (X=BF(4)(-)) exhibits a unique medium effect; the metal center is stabilized by reversible coordination of the bulky counteranion or solvent as a function of temperature. Reaction of [(PCN)Rh(CH(3))(Cl)] with AgBAr(f) in diethyl ether leads to an apparent rhodium(III) 14-electron complex 4, which is stabilized by reversible, weak coordination of a solvent molecule. This complex coordinates donors as weak as diethyl ether and dichloromethane. Upon substitution of the BF(4)(-) ion in [(PCN)Rh(CH(3))]BF(4) by the noncoordinating BAr(f)(-) ion in a noncoordinating medium, the resulting highly unsaturated intermediate undergoes a 1,2-metal-to-carbon methyl shift, followed by beta-hydrogen elimination, leading to the Rh-stabilized methylene arenium complex 5. This process represents a unique mild, dearomatization of the aromatic system induced by unsaturation.  相似文献   

18.
The terminal phosphide complex of tungsten Cp(CO) 3 W{PN(Me)CH 2 CH 2 PNMe} ( 3 ) prepared from Cp(Sn n Bu 3 )(CO) 2 W{PN(Me)CH 2 CH 2 NMe(OMe)}, BF 3 ;OEt 2 , and NaBPh 4 in situ reacts with PhCH 2 Cl to give cis -Cp(CO 2 )ClW{PN(Me)CH 2 CH 2 NMe(CH 2 Ph)} ( cis-4 ). During the reaction, C--Cl bond addition takes place toward a tungsten-phosphorus double bond. In contrast, isolated 3 does not react with PhCH 2 Cl. Isolated 3 , however, reacts with PhCH 2 Cl in the presence of BPh 3 and BF 3 to give trans-4 and cis-4 , respectively.  相似文献   

19.
An unprecedented, intramolecular metal-to-metal silyl ligand migration reaction has been discovered in a series of phosphido-bridged iron-platinum complexes and which may be triggered by an external nucleophile. Thus, reaction of solutions of [(OC)3-(R1/3Si)Fe(mu-PR2R3)Pt(1,5-COD) (1a R1 = OMe, R2 = 3 = Ph; 1b R1 = OMe, R2 = R3 = Cy; 1c R1 = Ph, R2 = R3 = Ph; 1d R1 = Ph, R2 = R3 = Cy; 1e R1 = Ph, R1 = H, R3 = Ph) in CH2Cl2 with CO rapidly afforded the corresponding complexes [(OC)4Fe(mu-PR2R3)Pt(SiR1/3)-(CO)] (2a-e) in which the silyl ligand has migrated from Fe to Pt, while two CO ligands have been ligated, one on each metal. When 1a or 1c was slowly treated with two equivalents of tBuNC at low temperature, quantitative displacement of the COD ligand was accompagnied by silyl migration from Fe to Pt and coordination of an isonitrile ligand to Fe and to Pt to give [(OC)3-(tBuNC)Fe(mu-PPh2)Pt[Si(OMe)3](CNtBu)] (3a) and [(OC)3(tBuNC)-Fe(mu-PPh2)Pt[SiPh3](CNtBu)] (3c). Reaction of 2a with one equivalent of tBuNC selectively led to substitution of the Pt-bound CO to give [(OC)4-Fe(mu-PCy2)Pt[Si(OMe)3](CNtBu)] (4b), which reacted with a second equivalent of tBuNC to give [(OC)4Fe(mu-PCy2)-Pt[Si(OMe)3](CNtBu)2] (5b) in which the metal-metal bond has been cleaved. Opening of the Fe-Pt bond was also observed upon reaction of 3a with tBuNC to give [(OC)3(tBuNC)-Fe(mu-PPh2)Pt[Si(OMe)3](CNtBu)2] (6). The silyl ligand migrates from Fe, in which it is trans to mu-PR2R3 in all the metal-metal-bonded complexes, to a position cis to the phosphido bridge on Pt. However, in 5a,b and 6 with no metal-metal bond, the Pt-bound silyl ligand is trans to the phosphido bridge. The intramolecular nature of the silyl migration, which may be formally viewed as a redox reaction, was established by a cross-over experiment consisting of the reaction of 1a and 1d with CO; this yielded exclusively 2a and 2d. The course of the silyl-migration reaction was found to depend a) on the steric properties of the -SiR1/3 ligand, and for a given mu-PR2R3 bridge (R2 = R3 = Ph), the migration rate decreases in the sequence Si(OMe)3> SiMe2Ph> SiMePh2>SiPh3; b) on the phosphido bridge and for a given silyl ligand (R1 = OMe), the migration rate decreases in the order mu-PPh2 > mu-PHCy; c) on the external nucleophile since reaction of 1c with two equivalents of P(OMe)3, P(OPh)3 or Ph2PCH2C(O)Ph led solely to displacement of the COD ligand with formation of 11a-c, respectively, whereas reaction with two equivalents of tBuNC gave the product of silyl migration 3c. Reaction of [(OC)3-[(MeO)3Si]Fe(mu-PPh2)Pt(PPh3)2] (7a) with tBuNC (even in slight excess) occurred stereoselectively with replacement of the PPh3 ligand trans to mu-PPh2, whereas reaction with CO led first to [(OC)3((MeO)3Si)Fe(mu-PPh2)Pt(CO)-(PPh3)] (8a), which then isomerized to the migration product [(OC)4Fe(mu-PPh2)Pt[Si(OMe)3](PPh3)] (9a). Most complexes were characterized by elemental analysis, IR and 1H, 31P, 13C, and 29Si NMR spectroscopy, and in five cases by X-ray diffraction.  相似文献   

20.
The complexes [Pt[(CH2)4](NN)], 1a (NN = 2,2'-bipyridine) and 1b (NN = 1,10-phenanthroline) react with 2,3-epoxypropylphenyl ether in the presence of CO2 to give tris-chelate platina(IV)cyclopentane complexes characterized by 1H and 13C NMR spectroscopy as [Pt[(CH2)4](CH2CHCH2OPhOCO2)(NN)], 2. The reactions proceed by the SN2 mechanism and the rates were independent of concentration of CO2. It is demonstrated that for 1a, the reaction proceeds 2.32 times faster than the similar reaction in which the dimethyl analog, [PtMe2(2,2'-bipyridine)], is used. The analog tris-chelate complex [Pt[(CH2)4](CH2CHPhOCO2)(phen)], 3a, was similarly synthesized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号